Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Share

\frac{\left(-3\right)^{2}x^{2}y^{2}x^{4}-2x^{2}\times \left(3xy^{2}\right)^{2}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
Expand \left(-3xy\right)^{2}.
\frac{9x^{2}y^{2}x^{4}-2x^{2}\times \left(3xy^{2}\right)^{2}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{9x^{6}y^{2}-2x^{2}\times \left(3xy^{2}\right)^{2}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
\frac{9x^{6}y^{2}-2x^{2}\times 3^{2}x^{2}\left(y^{2}\right)^{2}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
Expand \left(3xy^{2}\right)^{2}.
\frac{9x^{6}y^{2}-2x^{2}\times 3^{2}x^{2}y^{4}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9x^{6}y^{2}-2x^{2}\times 9x^{2}y^{4}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{9x^{6}y^{2}-18x^{2}x^{2}y^{4}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
Multiply 2 and 9 to get 18.
\frac{9x^{6}y^{2}-18x^{4}y^{4}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{9x^{6}y^{2}-9yx^{4}y^{4}}{\left(-3x^{2}y\right)^{2}}
Cancel out 2, the greatest common factor in 18 and 2.
\frac{9x^{6}y^{2}-9yx^{4}y^{4}}{\left(-3\right)^{2}\left(x^{2}\right)^{2}y^{2}}
Expand \left(-3x^{2}y\right)^{2}.
\frac{9x^{6}y^{2}-9yx^{4}y^{4}}{\left(-3\right)^{2}x^{4}y^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9x^{6}y^{2}-9yx^{4}y^{4}}{9x^{4}y^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{9y^{2}\left(x^{2}-y^{3}\right)x^{4}}{9y^{2}x^{4}}
Factor the expressions that are not already factored.
x^{2}-y^{3}
Cancel out 9y^{2}x^{4} in both numerator and denominator.
\frac{\left(-3\right)^{2}x^{2}y^{2}x^{4}-2x^{2}\times \left(3xy^{2}\right)^{2}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
Expand \left(-3xy\right)^{2}.
\frac{9x^{2}y^{2}x^{4}-2x^{2}\times \left(3xy^{2}\right)^{2}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{9x^{6}y^{2}-2x^{2}\times \left(3xy^{2}\right)^{2}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 4 to get 6.
\frac{9x^{6}y^{2}-2x^{2}\times 3^{2}x^{2}\left(y^{2}\right)^{2}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
Expand \left(3xy^{2}\right)^{2}.
\frac{9x^{6}y^{2}-2x^{2}\times 3^{2}x^{2}y^{4}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9x^{6}y^{2}-2x^{2}\times 9x^{2}y^{4}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{9x^{6}y^{2}-18x^{2}x^{2}y^{4}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
Multiply 2 and 9 to get 18.
\frac{9x^{6}y^{2}-18x^{4}y^{4}\times \frac{y}{2}}{\left(-3x^{2}y\right)^{2}}
To multiply powers of the same base, add their exponents. Add 2 and 2 to get 4.
\frac{9x^{6}y^{2}-9yx^{4}y^{4}}{\left(-3x^{2}y\right)^{2}}
Cancel out 2, the greatest common factor in 18 and 2.
\frac{9x^{6}y^{2}-9yx^{4}y^{4}}{\left(-3\right)^{2}\left(x^{2}\right)^{2}y^{2}}
Expand \left(-3x^{2}y\right)^{2}.
\frac{9x^{6}y^{2}-9yx^{4}y^{4}}{\left(-3\right)^{2}x^{4}y^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
\frac{9x^{6}y^{2}-9yx^{4}y^{4}}{9x^{4}y^{2}}
Calculate -3 to the power of 2 and get 9.
\frac{9y^{2}\left(x^{2}-y^{3}\right)x^{4}}{9y^{2}x^{4}}
Factor the expressions that are not already factored.
x^{2}-y^{3}
Cancel out 9y^{2}x^{4} in both numerator and denominator.