Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{-3a^{4}b^{2}\left(-a^{2}\right)}{-2a^{3}b}\right)^{3}}{-\frac{9}{4}a^{2}b^{3}}
Multiply b and b to get b^{2}.
\frac{\left(\frac{-3ab\left(-a^{2}\right)}{-2}\right)^{3}}{-\frac{9}{4}a^{2}b^{3}}
Cancel out ba^{3} in both numerator and denominator.
\frac{\left(\frac{3aba^{2}}{-2}\right)^{3}}{-\frac{9}{4}a^{2}b^{3}}
Multiply -3 and -1 to get 3.
\frac{\left(\frac{3a^{3}b}{-2}\right)^{3}}{-\frac{9}{4}a^{2}b^{3}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\frac{\left(3a^{3}b\right)^{3}}{\left(-2\right)^{3}}}{-\frac{9}{4}a^{2}b^{3}}
To raise \frac{3a^{3}b}{-2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3a^{3}b\right)^{3}}{\left(-2\right)^{3}\left(-\frac{9}{4}\right)a^{2}b^{3}}
Express \frac{\frac{\left(3a^{3}b\right)^{3}}{\left(-2\right)^{3}}}{-\frac{9}{4}a^{2}b^{3}} as a single fraction.
\frac{3^{3}\left(a^{3}\right)^{3}b^{3}}{\left(-2\right)^{3}\left(-\frac{9}{4}\right)a^{2}b^{3}}
Expand \left(3a^{3}b\right)^{3}.
\frac{3^{3}a^{9}b^{3}}{\left(-2\right)^{3}\left(-\frac{9}{4}\right)a^{2}b^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{27a^{9}b^{3}}{\left(-2\right)^{3}\left(-\frac{9}{4}\right)a^{2}b^{3}}
Calculate 3 to the power of 3 and get 27.
\frac{27a^{9}b^{3}}{-8\left(-\frac{9}{4}\right)a^{2}b^{3}}
Calculate -2 to the power of 3 and get -8.
\frac{27a^{9}b^{3}}{18a^{2}b^{3}}
Multiply -8 and -\frac{9}{4} to get 18.
\frac{3a^{7}}{2}
Cancel out 9a^{2}b^{3} in both numerator and denominator.
\frac{\left(\frac{-3a^{4}b^{2}\left(-a^{2}\right)}{-2a^{3}b}\right)^{3}}{-\frac{9}{4}a^{2}b^{3}}
Multiply b and b to get b^{2}.
\frac{\left(\frac{-3ab\left(-a^{2}\right)}{-2}\right)^{3}}{-\frac{9}{4}a^{2}b^{3}}
Cancel out ba^{3} in both numerator and denominator.
\frac{\left(\frac{3aba^{2}}{-2}\right)^{3}}{-\frac{9}{4}a^{2}b^{3}}
Multiply -3 and -1 to get 3.
\frac{\left(\frac{3a^{3}b}{-2}\right)^{3}}{-\frac{9}{4}a^{2}b^{3}}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\frac{\frac{\left(3a^{3}b\right)^{3}}{\left(-2\right)^{3}}}{-\frac{9}{4}a^{2}b^{3}}
To raise \frac{3a^{3}b}{-2} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(3a^{3}b\right)^{3}}{\left(-2\right)^{3}\left(-\frac{9}{4}\right)a^{2}b^{3}}
Express \frac{\frac{\left(3a^{3}b\right)^{3}}{\left(-2\right)^{3}}}{-\frac{9}{4}a^{2}b^{3}} as a single fraction.
\frac{3^{3}\left(a^{3}\right)^{3}b^{3}}{\left(-2\right)^{3}\left(-\frac{9}{4}\right)a^{2}b^{3}}
Expand \left(3a^{3}b\right)^{3}.
\frac{3^{3}a^{9}b^{3}}{\left(-2\right)^{3}\left(-\frac{9}{4}\right)a^{2}b^{3}}
To raise a power to another power, multiply the exponents. Multiply 3 and 3 to get 9.
\frac{27a^{9}b^{3}}{\left(-2\right)^{3}\left(-\frac{9}{4}\right)a^{2}b^{3}}
Calculate 3 to the power of 3 and get 27.
\frac{27a^{9}b^{3}}{-8\left(-\frac{9}{4}\right)a^{2}b^{3}}
Calculate -2 to the power of 3 and get -8.
\frac{27a^{9}b^{3}}{18a^{2}b^{3}}
Multiply -8 and -\frac{9}{4} to get 18.
\frac{3a^{7}}{2}
Cancel out 9a^{2}b^{3} in both numerator and denominator.