Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\left(-3\right)^{2}\left(a^{3}\right)^{2}\left(-2\right)a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
Expand \left(-3a^{3}\right)^{2}.
\frac{\left(\left(-3\right)^{2}a^{6}\left(-2\right)a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\left(9a^{6}\left(-2\right)a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
Calculate -3 to the power of 2 and get 9.
\frac{\left(-18a^{6}a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
Multiply 9 and -2 to get -18.
\frac{\left(-18a^{8}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{\left(-8a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
Combine -18a^{8} and 10a^{8} to get -8a^{8}.
\frac{\left(-8\right)^{2}\left(a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
Expand \left(-8a^{8}\right)^{2}.
\frac{\left(-8\right)^{2}a^{16}}{\left(4a^{5}\right)^{2}}-28^{6}
To raise a power to another power, multiply the exponents. Multiply 8 and 2 to get 16.
\frac{64a^{16}}{\left(4a^{5}\right)^{2}}-28^{6}
Calculate -8 to the power of 2 and get 64.
\frac{64a^{16}}{4^{2}\left(a^{5}\right)^{2}}-28^{6}
Expand \left(4a^{5}\right)^{2}.
\frac{64a^{16}}{4^{2}a^{10}}-28^{6}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{64a^{16}}{16a^{10}}-28^{6}
Calculate 4 to the power of 2 and get 16.
4a^{6}-28^{6}
Cancel out 16a^{10} in both numerator and denominator.
4a^{6}-481890304
Calculate 28 to the power of 6 and get 481890304.
\frac{\left(\left(-3\right)^{2}\left(a^{3}\right)^{2}\left(-2\right)a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
Expand \left(-3a^{3}\right)^{2}.
\frac{\left(\left(-3\right)^{2}a^{6}\left(-2\right)a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
\frac{\left(9a^{6}\left(-2\right)a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
Calculate -3 to the power of 2 and get 9.
\frac{\left(-18a^{6}a^{2}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
Multiply 9 and -2 to get -18.
\frac{\left(-18a^{8}+10a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
To multiply powers of the same base, add their exponents. Add 6 and 2 to get 8.
\frac{\left(-8a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
Combine -18a^{8} and 10a^{8} to get -8a^{8}.
\frac{\left(-8\right)^{2}\left(a^{8}\right)^{2}}{\left(4a^{5}\right)^{2}}-28^{6}
Expand \left(-8a^{8}\right)^{2}.
\frac{\left(-8\right)^{2}a^{16}}{\left(4a^{5}\right)^{2}}-28^{6}
To raise a power to another power, multiply the exponents. Multiply 8 and 2 to get 16.
\frac{64a^{16}}{\left(4a^{5}\right)^{2}}-28^{6}
Calculate -8 to the power of 2 and get 64.
\frac{64a^{16}}{4^{2}\left(a^{5}\right)^{2}}-28^{6}
Expand \left(4a^{5}\right)^{2}.
\frac{64a^{16}}{4^{2}a^{10}}-28^{6}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{64a^{16}}{16a^{10}}-28^{6}
Calculate 4 to the power of 2 and get 16.
4a^{6}-28^{6}
Cancel out 16a^{10} in both numerator and denominator.
4a^{6}-481890304
Calculate 28 to the power of 6 and get 481890304.