Evaluate
\frac{20}{9}\approx 2.222222222
Factor
\frac{2 ^ {2} \cdot 5}{3 ^ {2}} = 2\frac{2}{9} = 2.2222222222222223
Share
Copied to clipboard
\left(\left(-1\right)^{2}-\frac{2^{-3}}{\frac{1}{2}}\right)^{-1}-\frac{\sqrt{3}}{3}\left(2\sqrt{3}-3\sqrt{3}\right)-3^{-2}
To multiply powers of the same base, add their exponents. Add 0 and -2 to get -2.
\left(1-\frac{2^{-3}}{\frac{1}{2}}\right)^{-1}-\frac{\sqrt{3}}{3}\left(2\sqrt{3}-3\sqrt{3}\right)-3^{-2}
Calculate -1 to the power of 2 and get 1.
\left(1-\frac{\frac{1}{8}}{\frac{1}{2}}\right)^{-1}-\frac{\sqrt{3}}{3}\left(2\sqrt{3}-3\sqrt{3}\right)-3^{-2}
Calculate 2 to the power of -3 and get \frac{1}{8}.
\left(1-\frac{1}{8}\times 2\right)^{-1}-\frac{\sqrt{3}}{3}\left(2\sqrt{3}-3\sqrt{3}\right)-3^{-2}
Divide \frac{1}{8} by \frac{1}{2} by multiplying \frac{1}{8} by the reciprocal of \frac{1}{2}.
\left(1-\frac{1}{4}\right)^{-1}-\frac{\sqrt{3}}{3}\left(2\sqrt{3}-3\sqrt{3}\right)-3^{-2}
Multiply \frac{1}{8} and 2 to get \frac{1}{4}.
\left(\frac{3}{4}\right)^{-1}-\frac{\sqrt{3}}{3}\left(2\sqrt{3}-3\sqrt{3}\right)-3^{-2}
Subtract \frac{1}{4} from 1 to get \frac{3}{4}.
\frac{4}{3}-\frac{\sqrt{3}}{3}\left(2\sqrt{3}-3\sqrt{3}\right)-3^{-2}
Calculate \frac{3}{4} to the power of -1 and get \frac{4}{3}.
\frac{4}{3}-\frac{\sqrt{3}}{3}\left(-1\right)\sqrt{3}-3^{-2}
Combine 2\sqrt{3} and -3\sqrt{3} to get -\sqrt{3}.
\frac{4}{3}-\frac{\sqrt{3}\sqrt{3}}{3}\left(-1\right)-3^{-2}
Express \frac{\sqrt{3}}{3}\sqrt{3} as a single fraction.
\frac{4}{3}-\frac{\sqrt{3}\sqrt{3}}{3}\left(-1\right)-\frac{1}{9}
Calculate 3 to the power of -2 and get \frac{1}{9}.
\frac{4}{3}-\frac{3}{3}\left(-1\right)-\frac{1}{9}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{4}{3}-1\left(-1\right)-\frac{1}{9}
Divide 3 by 3 to get 1.
\frac{4}{3}-\left(-1\right)-\frac{1}{9}
Multiply 1 and -1 to get -1.
\frac{4}{3}+1-\frac{1}{9}
The opposite of -1 is 1.
\frac{7}{3}-\frac{1}{9}
Add \frac{4}{3} and 1 to get \frac{7}{3}.
\frac{20}{9}
Subtract \frac{1}{9} from \frac{7}{3} to get \frac{20}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}