Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\left(-\frac{9}{5}ab\left(-\frac{5}{3}a\right)^{2}\right)^{2}-4a^{4}\times \left(\frac{2}{3}a^{2}b^{2}\left(-\frac{3}{4}\right)\right)^{1}-5a^{4}\left(\left(-\frac{1}{2}ab\right)^{2}\right)^{0}\left(-a^{2}\right)b^{2}
Multiply b and b to get b^{2}.
\left(-\frac{9}{5}ab\left(-\frac{5}{3}a\right)^{2}\right)^{2}-4a^{4}\times \left(\frac{2}{3}a^{2}b^{2}\left(-\frac{3}{4}\right)\right)^{1}-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 0 to get 0.
\left(-\frac{9}{5}ab\left(-\frac{5}{3}\right)^{2}a^{2}\right)^{2}-4a^{4}\times \left(\frac{2}{3}a^{2}b^{2}\left(-\frac{3}{4}\right)\right)^{1}-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
Expand \left(-\frac{5}{3}a\right)^{2}.
\left(-\frac{9}{5}ab\times \frac{25}{9}a^{2}\right)^{2}-4a^{4}\times \left(\frac{2}{3}a^{2}b^{2}\left(-\frac{3}{4}\right)\right)^{1}-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
Calculate -\frac{5}{3} to the power of 2 and get \frac{25}{9}.
\left(-5aba^{2}\right)^{2}-4a^{4}\times \left(\frac{2}{3}a^{2}b^{2}\left(-\frac{3}{4}\right)\right)^{1}-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
Multiply -\frac{9}{5} and \frac{25}{9} to get -5.
\left(-5a^{3}b\right)^{2}-4a^{4}\times \left(\frac{2}{3}a^{2}b^{2}\left(-\frac{3}{4}\right)\right)^{1}-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
To multiply powers of the same base, add their exponents. Add 1 and 2 to get 3.
\left(-5\right)^{2}\left(a^{3}\right)^{2}b^{2}-4a^{4}\times \left(\frac{2}{3}a^{2}b^{2}\left(-\frac{3}{4}\right)\right)^{1}-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
Expand \left(-5a^{3}b\right)^{2}.
\left(-5\right)^{2}a^{6}b^{2}-4a^{4}\times \left(\frac{2}{3}a^{2}b^{2}\left(-\frac{3}{4}\right)\right)^{1}-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
25a^{6}b^{2}-4a^{4}\times \left(\frac{2}{3}a^{2}b^{2}\left(-\frac{3}{4}\right)\right)^{1}-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
Calculate -5 to the power of 2 and get 25.
25a^{6}b^{2}-4a^{4}\left(-\frac{1}{2}a^{2}b^{2}\right)^{1}-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
Multiply \frac{2}{3} and -\frac{3}{4} to get -\frac{1}{2}.
25a^{6}b^{2}-4a^{4}\left(-\frac{1}{2}\right)a^{2}b^{2}-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
Calculate -\frac{1}{2}a^{2}b^{2} to the power of 1 and get -\frac{1}{2}a^{2}b^{2}.
25a^{6}b^{2}-\left(-2a^{4}a^{2}b^{2}\right)-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
Multiply 4 and -\frac{1}{2} to get -2.
25a^{6}b^{2}-\left(-2a^{6}b^{2}\right)-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
25a^{6}b^{2}+2a^{6}b^{2}-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
The opposite of -2a^{6}b^{2} is 2a^{6}b^{2}.
27a^{6}b^{2}-5a^{4}\left(-\frac{1}{2}ab\right)^{0}\left(-a^{2}\right)b^{2}
Combine 25a^{6}b^{2} and 2a^{6}b^{2} to get 27a^{6}b^{2}.
27a^{6}b^{2}-5a^{4}\times 1\left(-a^{2}\right)b^{2}
Calculate -\frac{1}{2}ab to the power of 0 and get 1.
27a^{6}b^{2}-5a^{4}\left(-a^{2}\right)b^{2}
Multiply 5 and 1 to get 5.
27a^{6}b^{2}-5a^{6}\left(-1\right)b^{2}
To multiply powers of the same base, add their exponents. Add 4 and 2 to get 6.
27a^{6}b^{2}+5a^{6}b^{2}
Multiply -5 and -1 to get 5.
32a^{6}b^{2}
Combine 27a^{6}b^{2} and 5a^{6}b^{2} to get 32a^{6}b^{2}.