Verify
false
Share
Copied to clipboard
\left(\frac{19}{40}\times \frac{20}{19}-\frac{1}{6}\right)^{2}=\frac{\frac{5}{6}\left(\frac{7}{5}+\frac{1}{10}\right)}{\frac{2}{3}-\frac{1}{6}\times \frac{5}{2}}
Subtract \frac{2}{5} from \frac{7}{8} to get \frac{19}{40}.
\left(\frac{1}{2}-\frac{1}{6}\right)^{2}=\frac{\frac{5}{6}\left(\frac{7}{5}+\frac{1}{10}\right)}{\frac{2}{3}-\frac{1}{6}\times \frac{5}{2}}
Multiply \frac{19}{40} and \frac{20}{19} to get \frac{1}{2}.
\left(\frac{1}{3}\right)^{2}=\frac{\frac{5}{6}\left(\frac{7}{5}+\frac{1}{10}\right)}{\frac{2}{3}-\frac{1}{6}\times \frac{5}{2}}
Subtract \frac{1}{6} from \frac{1}{2} to get \frac{1}{3}.
\frac{1}{9}=\frac{\frac{5}{6}\left(\frac{7}{5}+\frac{1}{10}\right)}{\frac{2}{3}-\frac{1}{6}\times \frac{5}{2}}
Calculate \frac{1}{3} to the power of 2 and get \frac{1}{9}.
\frac{1}{9}=\frac{\frac{5}{6}\times \frac{3}{2}}{\frac{2}{3}-\frac{1}{6}\times \frac{5}{2}}
Add \frac{7}{5} and \frac{1}{10} to get \frac{3}{2}.
\frac{1}{9}=\frac{\frac{5}{4}}{\frac{2}{3}-\frac{1}{6}\times \frac{5}{2}}
Multiply \frac{5}{6} and \frac{3}{2} to get \frac{5}{4}.
\frac{1}{9}=\frac{\frac{5}{4}}{\frac{2}{3}-\frac{5}{12}}
Multiply \frac{1}{6} and \frac{5}{2} to get \frac{5}{12}.
\frac{1}{9}=\frac{\frac{5}{4}}{\frac{1}{4}}
Subtract \frac{5}{12} from \frac{2}{3} to get \frac{1}{4}.
\frac{1}{9}=\frac{5}{4}\times 4
Divide \frac{5}{4} by \frac{1}{4} by multiplying \frac{5}{4} by the reciprocal of \frac{1}{4}.
\frac{1}{9}=5
Multiply \frac{5}{4} and 4 to get 5.
\frac{1}{9}=\frac{45}{9}
Convert 5 to fraction \frac{45}{9}.
\text{false}
Compare \frac{1}{9} and \frac{45}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}