Evaluate
\frac{\left(10-a\right)\left(a-1\right)}{103-6a}
Expand
-\frac{a^{2}-11a+10}{103-6a}
Share
Copied to clipboard
\frac{\left(\frac{3ab\left(ab-2\right)}{\left(ab-2\right)\left(ab+2\right)}-\frac{3ab\left(ab+2\right)}{\left(ab-2\right)\left(ab+2\right)}\right)\times \frac{a^{2}b^{2}-4}{9ab}+\frac{a^{2}+5a+6}{a^{2}+2a-3}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of ab+2 and ab-2 is \left(ab-2\right)\left(ab+2\right). Multiply \frac{3ab}{ab+2} times \frac{ab-2}{ab-2}. Multiply \frac{3ab}{ab-2} times \frac{ab+2}{ab+2}.
\frac{\frac{3ab\left(ab-2\right)-3ab\left(ab+2\right)}{\left(ab-2\right)\left(ab+2\right)}\times \frac{a^{2}b^{2}-4}{9ab}+\frac{a^{2}+5a+6}{a^{2}+2a-3}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Since \frac{3ab\left(ab-2\right)}{\left(ab-2\right)\left(ab+2\right)} and \frac{3ab\left(ab+2\right)}{\left(ab-2\right)\left(ab+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a^{2}b^{2}-6ab-3a^{2}b^{2}-6ab}{\left(ab-2\right)\left(ab+2\right)}\times \frac{a^{2}b^{2}-4}{9ab}+\frac{a^{2}+5a+6}{a^{2}+2a-3}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Do the multiplications in 3ab\left(ab-2\right)-3ab\left(ab+2\right).
\frac{\frac{-12ab}{\left(ab-2\right)\left(ab+2\right)}\times \frac{a^{2}b^{2}-4}{9ab}+\frac{a^{2}+5a+6}{a^{2}+2a-3}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Combine like terms in 3a^{2}b^{2}-6ab-3a^{2}b^{2}-6ab.
\frac{\frac{-12ab\left(a^{2}b^{2}-4\right)}{\left(ab-2\right)\left(ab+2\right)\times 9ab}+\frac{a^{2}+5a+6}{a^{2}+2a-3}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Multiply \frac{-12ab}{\left(ab-2\right)\left(ab+2\right)} times \frac{a^{2}b^{2}-4}{9ab} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-4\left(a^{2}b^{2}-4\right)}{3\left(ab-2\right)\left(ab+2\right)}+\frac{a^{2}+5a+6}{a^{2}+2a-3}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Cancel out 3ab in both numerator and denominator.
\frac{\frac{-4\left(a^{2}b^{2}-4\right)}{3\left(ab-2\right)\left(ab+2\right)}+\frac{\left(a+2\right)\left(a+3\right)}{\left(a-1\right)\left(a+3\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Factor the expressions that are not already factored in \frac{a^{2}+5a+6}{a^{2}+2a-3}.
\frac{\frac{-4\left(a^{2}b^{2}-4\right)}{3\left(ab-2\right)\left(ab+2\right)}+\frac{a+2}{a-1}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Cancel out a+3 in both numerator and denominator.
\frac{\frac{-4\left(a^{2}b^{2}-4\right)\left(a-1\right)}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}+\frac{\left(a+2\right)\times 3\left(ab-2\right)\left(ab+2\right)}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(ab-2\right)\left(ab+2\right) and a-1 is 3\left(a-1\right)\left(ab-2\right)\left(ab+2\right). Multiply \frac{-4\left(a^{2}b^{2}-4\right)}{3\left(ab-2\right)\left(ab+2\right)} times \frac{a-1}{a-1}. Multiply \frac{a+2}{a-1} times \frac{3\left(ab-2\right)\left(ab+2\right)}{3\left(ab-2\right)\left(ab+2\right)}.
\frac{\frac{-4\left(a^{2}b^{2}-4\right)\left(a-1\right)+\left(a+2\right)\times 3\left(ab-2\right)\left(ab+2\right)}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Since \frac{-4\left(a^{2}b^{2}-4\right)\left(a-1\right)}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)} and \frac{\left(a+2\right)\times 3\left(ab-2\right)\left(ab+2\right)}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-4a^{3}b^{2}+4a^{2}b^{2}+16a-16-12a+3a^{3}b^{2}+6a^{2}b^{2}-24}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Do the multiplications in -4\left(a^{2}b^{2}-4\right)\left(a-1\right)+\left(a+2\right)\times 3\left(ab-2\right)\left(ab+2\right).
\frac{\frac{4a-a^{3}b^{2}+10a^{2}b^{2}-40}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Combine like terms in -4a^{3}b^{2}+4a^{2}b^{2}+16a-16-12a+3a^{3}b^{2}+6a^{2}b^{2}-24.
\frac{\frac{\left(-a+10\right)\left(ab-2\right)\left(ab+2\right)}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Factor the expressions that are not already factored in \frac{4a-a^{3}b^{2}+10a^{2}b^{2}-40}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}.
\frac{\frac{-a+10}{3\left(a-1\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Cancel out \left(ab-2\right)\left(ab+2\right) in both numerator and denominator.
\frac{\frac{-a+10}{3\left(a-1\right)}}{\frac{100-6a+3}{3a^{2}-6a+3}}
Calculate 10 to the power of 2 and get 100.
\frac{\frac{-a+10}{3\left(a-1\right)}}{\frac{103-6a}{3a^{2}-6a+3}}
Add 100 and 3 to get 103.
\frac{\left(-a+10\right)\left(3a^{2}-6a+3\right)}{3\left(a-1\right)\left(103-6a\right)}
Divide \frac{-a+10}{3\left(a-1\right)} by \frac{103-6a}{3a^{2}-6a+3} by multiplying \frac{-a+10}{3\left(a-1\right)} by the reciprocal of \frac{103-6a}{3a^{2}-6a+3}.
\frac{3\left(-a+10\right)\left(a-1\right)^{2}}{3\left(a-1\right)\left(-6a+103\right)}
Factor the expressions that are not already factored.
\frac{\left(a-1\right)\left(-a+10\right)}{-6a+103}
Cancel out 3\left(a-1\right) in both numerator and denominator.
\frac{-a^{2}+11a-10}{-6a+103}
Expand the expression.
\frac{\left(\frac{3ab\left(ab-2\right)}{\left(ab-2\right)\left(ab+2\right)}-\frac{3ab\left(ab+2\right)}{\left(ab-2\right)\left(ab+2\right)}\right)\times \frac{a^{2}b^{2}-4}{9ab}+\frac{a^{2}+5a+6}{a^{2}+2a-3}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of ab+2 and ab-2 is \left(ab-2\right)\left(ab+2\right). Multiply \frac{3ab}{ab+2} times \frac{ab-2}{ab-2}. Multiply \frac{3ab}{ab-2} times \frac{ab+2}{ab+2}.
\frac{\frac{3ab\left(ab-2\right)-3ab\left(ab+2\right)}{\left(ab-2\right)\left(ab+2\right)}\times \frac{a^{2}b^{2}-4}{9ab}+\frac{a^{2}+5a+6}{a^{2}+2a-3}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Since \frac{3ab\left(ab-2\right)}{\left(ab-2\right)\left(ab+2\right)} and \frac{3ab\left(ab+2\right)}{\left(ab-2\right)\left(ab+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{3a^{2}b^{2}-6ab-3a^{2}b^{2}-6ab}{\left(ab-2\right)\left(ab+2\right)}\times \frac{a^{2}b^{2}-4}{9ab}+\frac{a^{2}+5a+6}{a^{2}+2a-3}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Do the multiplications in 3ab\left(ab-2\right)-3ab\left(ab+2\right).
\frac{\frac{-12ab}{\left(ab-2\right)\left(ab+2\right)}\times \frac{a^{2}b^{2}-4}{9ab}+\frac{a^{2}+5a+6}{a^{2}+2a-3}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Combine like terms in 3a^{2}b^{2}-6ab-3a^{2}b^{2}-6ab.
\frac{\frac{-12ab\left(a^{2}b^{2}-4\right)}{\left(ab-2\right)\left(ab+2\right)\times 9ab}+\frac{a^{2}+5a+6}{a^{2}+2a-3}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Multiply \frac{-12ab}{\left(ab-2\right)\left(ab+2\right)} times \frac{a^{2}b^{2}-4}{9ab} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-4\left(a^{2}b^{2}-4\right)}{3\left(ab-2\right)\left(ab+2\right)}+\frac{a^{2}+5a+6}{a^{2}+2a-3}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Cancel out 3ab in both numerator and denominator.
\frac{\frac{-4\left(a^{2}b^{2}-4\right)}{3\left(ab-2\right)\left(ab+2\right)}+\frac{\left(a+2\right)\left(a+3\right)}{\left(a-1\right)\left(a+3\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Factor the expressions that are not already factored in \frac{a^{2}+5a+6}{a^{2}+2a-3}.
\frac{\frac{-4\left(a^{2}b^{2}-4\right)}{3\left(ab-2\right)\left(ab+2\right)}+\frac{a+2}{a-1}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Cancel out a+3 in both numerator and denominator.
\frac{\frac{-4\left(a^{2}b^{2}-4\right)\left(a-1\right)}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}+\frac{\left(a+2\right)\times 3\left(ab-2\right)\left(ab+2\right)}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\left(ab-2\right)\left(ab+2\right) and a-1 is 3\left(a-1\right)\left(ab-2\right)\left(ab+2\right). Multiply \frac{-4\left(a^{2}b^{2}-4\right)}{3\left(ab-2\right)\left(ab+2\right)} times \frac{a-1}{a-1}. Multiply \frac{a+2}{a-1} times \frac{3\left(ab-2\right)\left(ab+2\right)}{3\left(ab-2\right)\left(ab+2\right)}.
\frac{\frac{-4\left(a^{2}b^{2}-4\right)\left(a-1\right)+\left(a+2\right)\times 3\left(ab-2\right)\left(ab+2\right)}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Since \frac{-4\left(a^{2}b^{2}-4\right)\left(a-1\right)}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)} and \frac{\left(a+2\right)\times 3\left(ab-2\right)\left(ab+2\right)}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-4a^{3}b^{2}+4a^{2}b^{2}+16a-16-12a+3a^{3}b^{2}+6a^{2}b^{2}-24}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Do the multiplications in -4\left(a^{2}b^{2}-4\right)\left(a-1\right)+\left(a+2\right)\times 3\left(ab-2\right)\left(ab+2\right).
\frac{\frac{4a-a^{3}b^{2}+10a^{2}b^{2}-40}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Combine like terms in -4a^{3}b^{2}+4a^{2}b^{2}+16a-16-12a+3a^{3}b^{2}+6a^{2}b^{2}-24.
\frac{\frac{\left(-a+10\right)\left(ab-2\right)\left(ab+2\right)}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Factor the expressions that are not already factored in \frac{4a-a^{3}b^{2}+10a^{2}b^{2}-40}{3\left(a-1\right)\left(ab-2\right)\left(ab+2\right)}.
\frac{\frac{-a+10}{3\left(a-1\right)}}{\frac{10^{2}-6a+3}{3a^{2}-6a+3}}
Cancel out \left(ab-2\right)\left(ab+2\right) in both numerator and denominator.
\frac{\frac{-a+10}{3\left(a-1\right)}}{\frac{100-6a+3}{3a^{2}-6a+3}}
Calculate 10 to the power of 2 and get 100.
\frac{\frac{-a+10}{3\left(a-1\right)}}{\frac{103-6a}{3a^{2}-6a+3}}
Add 100 and 3 to get 103.
\frac{\left(-a+10\right)\left(3a^{2}-6a+3\right)}{3\left(a-1\right)\left(103-6a\right)}
Divide \frac{-a+10}{3\left(a-1\right)} by \frac{103-6a}{3a^{2}-6a+3} by multiplying \frac{-a+10}{3\left(a-1\right)} by the reciprocal of \frac{103-6a}{3a^{2}-6a+3}.
\frac{3\left(-a+10\right)\left(a-1\right)^{2}}{3\left(a-1\right)\left(-6a+103\right)}
Factor the expressions that are not already factored.
\frac{\left(a-1\right)\left(-a+10\right)}{-6a+103}
Cancel out 3\left(a-1\right) in both numerator and denominator.
\frac{-a^{2}+11a-10}{-6a+103}
Expand the expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}