Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{\left(\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Expand \left(\frac{3}{5}xy\right)^{2}.
\frac{\left(\frac{\frac{9}{25}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Calculate \frac{3}{5} to the power of 2 and get \frac{9}{25}.
\frac{\left(\frac{\frac{9}{25}xy^{2}}{\frac{3}{5}}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Cancel out x in both numerator and denominator.
\frac{\left(\frac{\frac{9}{25}xy^{2}\times 5}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Divide \frac{9}{25}xy^{2} by \frac{3}{5} by multiplying \frac{9}{25}xy^{2} by the reciprocal of \frac{3}{5}.
\frac{\left(\frac{\frac{9}{5}xy^{2}}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Multiply \frac{9}{25} and 5 to get \frac{9}{5}.
\frac{\left(\frac{3}{5}xy^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Divide \frac{9}{5}xy^{2} by 3 to get \frac{3}{5}xy^{2}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}\left(y^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Expand \left(\frac{3}{5}xy^{2}\right)^{3}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Calculate \frac{3}{5} to the power of 3 and get \frac{27}{125}.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}\right)^{2}x^{2}}
Expand \left(\frac{3}{5}x\right)^{2}.
\frac{\frac{27}{125}x^{3}y^{6}}{\frac{9}{25}x^{2}}
Calculate \frac{3}{5} to the power of 2 and get \frac{9}{25}.
\frac{\frac{27}{125}xy^{6}}{\frac{9}{25}}
Cancel out x^{2} in both numerator and denominator.
\frac{\frac{27}{125}xy^{6}\times 25}{9}
Divide \frac{27}{125}xy^{6} by \frac{9}{25} by multiplying \frac{27}{125}xy^{6} by the reciprocal of \frac{9}{25}.
\frac{\frac{27}{5}xy^{6}}{9}
Multiply \frac{27}{125} and 25 to get \frac{27}{5}.
\frac{3}{5}xy^{6}
Divide \frac{27}{5}xy^{6} by 9 to get \frac{3}{5}xy^{6}.
\frac{\left(\frac{\left(\frac{3}{5}\right)^{2}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Expand \left(\frac{3}{5}xy\right)^{2}.
\frac{\left(\frac{\frac{9}{25}x^{2}y^{2}}{\frac{3}{5}x}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Calculate \frac{3}{5} to the power of 2 and get \frac{9}{25}.
\frac{\left(\frac{\frac{9}{25}xy^{2}}{\frac{3}{5}}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Cancel out x in both numerator and denominator.
\frac{\left(\frac{\frac{9}{25}xy^{2}\times 5}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Divide \frac{9}{25}xy^{2} by \frac{3}{5} by multiplying \frac{9}{25}xy^{2} by the reciprocal of \frac{3}{5}.
\frac{\left(\frac{\frac{9}{5}xy^{2}}{3}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Multiply \frac{9}{25} and 5 to get \frac{9}{5}.
\frac{\left(\frac{3}{5}xy^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Divide \frac{9}{5}xy^{2} by 3 to get \frac{3}{5}xy^{2}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}\left(y^{2}\right)^{3}}{\left(\frac{3}{5}x\right)^{2}}
Expand \left(\frac{3}{5}xy^{2}\right)^{3}.
\frac{\left(\frac{3}{5}\right)^{3}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
To raise a power to another power, multiply the exponents. Multiply 2 and 3 to get 6.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}x\right)^{2}}
Calculate \frac{3}{5} to the power of 3 and get \frac{27}{125}.
\frac{\frac{27}{125}x^{3}y^{6}}{\left(\frac{3}{5}\right)^{2}x^{2}}
Expand \left(\frac{3}{5}x\right)^{2}.
\frac{\frac{27}{125}x^{3}y^{6}}{\frac{9}{25}x^{2}}
Calculate \frac{3}{5} to the power of 2 and get \frac{9}{25}.
\frac{\frac{27}{125}xy^{6}}{\frac{9}{25}}
Cancel out x^{2} in both numerator and denominator.
\frac{\frac{27}{125}xy^{6}\times 25}{9}
Divide \frac{27}{125}xy^{6} by \frac{9}{25} by multiplying \frac{27}{125}xy^{6} by the reciprocal of \frac{9}{25}.
\frac{\frac{27}{5}xy^{6}}{9}
Multiply \frac{27}{125} and 25 to get \frac{27}{5}.
\frac{3}{5}xy^{6}
Divide \frac{27}{5}xy^{6} by 9 to get \frac{3}{5}xy^{6}.