Evaluate
\frac{19}{18}\approx 1.055555556
Factor
\frac{19}{2 \cdot 3 ^ {2}} = 1\frac{1}{18} = 1.0555555555555556
Share
Copied to clipboard
\frac{\frac{\frac{3}{20}+\frac{2}{3}}{\frac{46-4}{90}}+\frac{135-13}{100}\times \frac{5}{9}}{\frac{25-2}{10}}
Reduce the fraction \frac{6}{9} to lowest terms by extracting and canceling out 3.
\frac{\frac{\frac{9}{60}+\frac{40}{60}}{\frac{46-4}{90}}+\frac{135-13}{100}\times \frac{5}{9}}{\frac{25-2}{10}}
Least common multiple of 20 and 3 is 60. Convert \frac{3}{20} and \frac{2}{3} to fractions with denominator 60.
\frac{\frac{\frac{9+40}{60}}{\frac{46-4}{90}}+\frac{135-13}{100}\times \frac{5}{9}}{\frac{25-2}{10}}
Since \frac{9}{60} and \frac{40}{60} have the same denominator, add them by adding their numerators.
\frac{\frac{\frac{49}{60}}{\frac{46-4}{90}}+\frac{135-13}{100}\times \frac{5}{9}}{\frac{25-2}{10}}
Add 9 and 40 to get 49.
\frac{\frac{\frac{49}{60}}{\frac{42}{90}}+\frac{135-13}{100}\times \frac{5}{9}}{\frac{25-2}{10}}
Subtract 4 from 46 to get 42.
\frac{\frac{\frac{49}{60}}{\frac{7}{15}}+\frac{135-13}{100}\times \frac{5}{9}}{\frac{25-2}{10}}
Reduce the fraction \frac{42}{90} to lowest terms by extracting and canceling out 6.
\frac{\frac{49}{60}\times \frac{15}{7}+\frac{135-13}{100}\times \frac{5}{9}}{\frac{25-2}{10}}
Divide \frac{49}{60} by \frac{7}{15} by multiplying \frac{49}{60} by the reciprocal of \frac{7}{15}.
\frac{\frac{49\times 15}{60\times 7}+\frac{135-13}{100}\times \frac{5}{9}}{\frac{25-2}{10}}
Multiply \frac{49}{60} times \frac{15}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{735}{420}+\frac{135-13}{100}\times \frac{5}{9}}{\frac{25-2}{10}}
Do the multiplications in the fraction \frac{49\times 15}{60\times 7}.
\frac{\frac{7}{4}+\frac{135-13}{100}\times \frac{5}{9}}{\frac{25-2}{10}}
Reduce the fraction \frac{735}{420} to lowest terms by extracting and canceling out 105.
\frac{\frac{7}{4}+\frac{122}{100}\times \frac{5}{9}}{\frac{25-2}{10}}
Subtract 13 from 135 to get 122.
\frac{\frac{7}{4}+\frac{61}{50}\times \frac{5}{9}}{\frac{25-2}{10}}
Reduce the fraction \frac{122}{100} to lowest terms by extracting and canceling out 2.
\frac{\frac{7}{4}+\frac{61\times 5}{50\times 9}}{\frac{25-2}{10}}
Multiply \frac{61}{50} times \frac{5}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{7}{4}+\frac{305}{450}}{\frac{25-2}{10}}
Do the multiplications in the fraction \frac{61\times 5}{50\times 9}.
\frac{\frac{7}{4}+\frac{61}{90}}{\frac{25-2}{10}}
Reduce the fraction \frac{305}{450} to lowest terms by extracting and canceling out 5.
\frac{\frac{315}{180}+\frac{122}{180}}{\frac{25-2}{10}}
Least common multiple of 4 and 90 is 180. Convert \frac{7}{4} and \frac{61}{90} to fractions with denominator 180.
\frac{\frac{315+122}{180}}{\frac{25-2}{10}}
Since \frac{315}{180} and \frac{122}{180} have the same denominator, add them by adding their numerators.
\frac{\frac{437}{180}}{\frac{25-2}{10}}
Add 315 and 122 to get 437.
\frac{\frac{437}{180}}{\frac{23}{10}}
Subtract 2 from 25 to get 23.
\frac{437}{180}\times \frac{10}{23}
Divide \frac{437}{180} by \frac{23}{10} by multiplying \frac{437}{180} by the reciprocal of \frac{23}{10}.
\frac{437\times 10}{180\times 23}
Multiply \frac{437}{180} times \frac{10}{23} by multiplying numerator times numerator and denominator times denominator.
\frac{4370}{4140}
Do the multiplications in the fraction \frac{437\times 10}{180\times 23}.
\frac{19}{18}
Reduce the fraction \frac{4370}{4140} to lowest terms by extracting and canceling out 230.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}