Evaluate
-\frac{21}{50}=-0.42
Factor
-\frac{21}{50} = -0.42
Share
Copied to clipboard
\frac{\frac{\left(\frac{2}{3}-\frac{7\times 4}{2\times 15}\right)\left(\frac{2}{10}+\frac{3}{5}\right)}{\frac{2}{3}+\frac{4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Multiply \frac{7}{2} times \frac{4}{15} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\left(\frac{2}{3}-\frac{28}{30}\right)\left(\frac{2}{10}+\frac{3}{5}\right)}{\frac{2}{3}+\frac{4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Do the multiplications in the fraction \frac{7\times 4}{2\times 15}.
\frac{\frac{\left(\frac{2}{3}-\frac{14}{15}\right)\left(\frac{2}{10}+\frac{3}{5}\right)}{\frac{2}{3}+\frac{4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Reduce the fraction \frac{28}{30} to lowest terms by extracting and canceling out 2.
\frac{\frac{\left(\frac{10}{15}-\frac{14}{15}\right)\left(\frac{2}{10}+\frac{3}{5}\right)}{\frac{2}{3}+\frac{4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Least common multiple of 3 and 15 is 15. Convert \frac{2}{3} and \frac{14}{15} to fractions with denominator 15.
\frac{\frac{\frac{10-14}{15}\left(\frac{2}{10}+\frac{3}{5}\right)}{\frac{2}{3}+\frac{4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Since \frac{10}{15} and \frac{14}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-\frac{4}{15}\left(\frac{2}{10}+\frac{3}{5}\right)}{\frac{2}{3}+\frac{4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Subtract 14 from 10 to get -4.
\frac{\frac{-\frac{4}{15}\left(\frac{1}{5}+\frac{3}{5}\right)}{\frac{2}{3}+\frac{4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
\frac{\frac{-\frac{4}{15}\times \frac{1+3}{5}}{\frac{2}{3}+\frac{4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Since \frac{1}{5} and \frac{3}{5} have the same denominator, add them by adding their numerators.
\frac{\frac{-\frac{4}{15}\times \frac{4}{5}}{\frac{2}{3}+\frac{4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Add 1 and 3 to get 4.
\frac{\frac{\frac{-4\times 4}{15\times 5}}{\frac{2}{3}+\frac{4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Multiply -\frac{4}{15} times \frac{4}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{\frac{-16}{75}}{\frac{2}{3}+\frac{4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Do the multiplications in the fraction \frac{-4\times 4}{15\times 5}.
\frac{\frac{-\frac{16}{75}}{\frac{2}{3}+\frac{4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Fraction \frac{-16}{75} can be rewritten as -\frac{16}{75} by extracting the negative sign.
\frac{\frac{-\frac{16}{75}}{\frac{6}{9}+\frac{4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Least common multiple of 3 and 9 is 9. Convert \frac{2}{3} and \frac{4}{9} to fractions with denominator 9.
\frac{\frac{-\frac{16}{75}}{\frac{6+4}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Since \frac{6}{9} and \frac{4}{9} have the same denominator, add them by adding their numerators.
\frac{\frac{-\frac{16}{75}}{\frac{10}{9}}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Add 6 and 4 to get 10.
\frac{-\frac{16}{75}\times \frac{9}{10}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Divide -\frac{16}{75} by \frac{10}{9} by multiplying -\frac{16}{75} by the reciprocal of \frac{10}{9}.
\frac{\frac{-16\times 9}{75\times 10}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Multiply -\frac{16}{75} times \frac{9}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-144}{750}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Do the multiplications in the fraction \frac{-16\times 9}{75\times 10}.
\frac{-\frac{24}{125}}{\frac{3}{5}\times \frac{10}{7}-\frac{2}{5}}
Reduce the fraction \frac{-144}{750} to lowest terms by extracting and canceling out 6.
\frac{-\frac{24}{125}}{\frac{3\times 10}{5\times 7}-\frac{2}{5}}
Multiply \frac{3}{5} times \frac{10}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-\frac{24}{125}}{\frac{30}{35}-\frac{2}{5}}
Do the multiplications in the fraction \frac{3\times 10}{5\times 7}.
\frac{-\frac{24}{125}}{\frac{6}{7}-\frac{2}{5}}
Reduce the fraction \frac{30}{35} to lowest terms by extracting and canceling out 5.
\frac{-\frac{24}{125}}{\frac{30}{35}-\frac{14}{35}}
Least common multiple of 7 and 5 is 35. Convert \frac{6}{7} and \frac{2}{5} to fractions with denominator 35.
\frac{-\frac{24}{125}}{\frac{30-14}{35}}
Since \frac{30}{35} and \frac{14}{35} have the same denominator, subtract them by subtracting their numerators.
\frac{-\frac{24}{125}}{\frac{16}{35}}
Subtract 14 from 30 to get 16.
-\frac{24}{125}\times \frac{35}{16}
Divide -\frac{24}{125} by \frac{16}{35} by multiplying -\frac{24}{125} by the reciprocal of \frac{16}{35}.
\frac{-24\times 35}{125\times 16}
Multiply -\frac{24}{125} times \frac{35}{16} by multiplying numerator times numerator and denominator times denominator.
\frac{-840}{2000}
Do the multiplications in the fraction \frac{-24\times 35}{125\times 16}.
-\frac{21}{50}
Reduce the fraction \frac{-840}{2000} to lowest terms by extracting and canceling out 40.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}