[ ( \frac { 1 } { 3 } ) ^ { 3 } - ( \frac { 1 } { 9 } ) ^ { 3 } ] \times 3 ^ { 2 } \quad \text { (f) } \frac { 12 } { 6 ^ { 3 } }
Evaluate
\frac{13f}{729}
Expand
\frac{13f}{729}
Share
Copied to clipboard
\left(\frac{1}{27}-\left(\frac{1}{9}\right)^{3}\right)\times 3^{2}f\times \frac{12}{6^{3}}
Calculate \frac{1}{3} to the power of 3 and get \frac{1}{27}.
\left(\frac{1}{27}-\frac{1}{729}\right)\times 3^{2}f\times \frac{12}{6^{3}}
Calculate \frac{1}{9} to the power of 3 and get \frac{1}{729}.
\left(\frac{27}{729}-\frac{1}{729}\right)\times 3^{2}f\times \frac{12}{6^{3}}
Least common multiple of 27 and 729 is 729. Convert \frac{1}{27} and \frac{1}{729} to fractions with denominator 729.
\frac{27-1}{729}\times 3^{2}f\times \frac{12}{6^{3}}
Since \frac{27}{729} and \frac{1}{729} have the same denominator, subtract them by subtracting their numerators.
\frac{26}{729}\times 3^{2}f\times \frac{12}{6^{3}}
Subtract 1 from 27 to get 26.
\frac{26}{729}\times 9f\times \frac{12}{6^{3}}
Calculate 3 to the power of 2 and get 9.
\frac{26\times 9}{729}f\times \frac{12}{6^{3}}
Express \frac{26}{729}\times 9 as a single fraction.
\frac{234}{729}f\times \frac{12}{6^{3}}
Multiply 26 and 9 to get 234.
\frac{26}{81}f\times \frac{12}{6^{3}}
Reduce the fraction \frac{234}{729} to lowest terms by extracting and canceling out 9.
\frac{26}{81}f\times \frac{12}{216}
Calculate 6 to the power of 3 and get 216.
\frac{26}{81}f\times \frac{1}{18}
Reduce the fraction \frac{12}{216} to lowest terms by extracting and canceling out 12.
\frac{26\times 1}{81\times 18}f
Multiply \frac{26}{81} times \frac{1}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{26}{1458}f
Do the multiplications in the fraction \frac{26\times 1}{81\times 18}.
\frac{13}{729}f
Reduce the fraction \frac{26}{1458} to lowest terms by extracting and canceling out 2.
\left(\frac{1}{27}-\left(\frac{1}{9}\right)^{3}\right)\times 3^{2}f\times \frac{12}{6^{3}}
Calculate \frac{1}{3} to the power of 3 and get \frac{1}{27}.
\left(\frac{1}{27}-\frac{1}{729}\right)\times 3^{2}f\times \frac{12}{6^{3}}
Calculate \frac{1}{9} to the power of 3 and get \frac{1}{729}.
\left(\frac{27}{729}-\frac{1}{729}\right)\times 3^{2}f\times \frac{12}{6^{3}}
Least common multiple of 27 and 729 is 729. Convert \frac{1}{27} and \frac{1}{729} to fractions with denominator 729.
\frac{27-1}{729}\times 3^{2}f\times \frac{12}{6^{3}}
Since \frac{27}{729} and \frac{1}{729} have the same denominator, subtract them by subtracting their numerators.
\frac{26}{729}\times 3^{2}f\times \frac{12}{6^{3}}
Subtract 1 from 27 to get 26.
\frac{26}{729}\times 9f\times \frac{12}{6^{3}}
Calculate 3 to the power of 2 and get 9.
\frac{26\times 9}{729}f\times \frac{12}{6^{3}}
Express \frac{26}{729}\times 9 as a single fraction.
\frac{234}{729}f\times \frac{12}{6^{3}}
Multiply 26 and 9 to get 234.
\frac{26}{81}f\times \frac{12}{6^{3}}
Reduce the fraction \frac{234}{729} to lowest terms by extracting and canceling out 9.
\frac{26}{81}f\times \frac{12}{216}
Calculate 6 to the power of 3 and get 216.
\frac{26}{81}f\times \frac{1}{18}
Reduce the fraction \frac{12}{216} to lowest terms by extracting and canceling out 12.
\frac{26\times 1}{81\times 18}f
Multiply \frac{26}{81} times \frac{1}{18} by multiplying numerator times numerator and denominator times denominator.
\frac{26}{1458}f
Do the multiplications in the fraction \frac{26\times 1}{81\times 18}.
\frac{13}{729}f
Reduce the fraction \frac{26}{1458} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}