Evaluate
\frac{\left(49-32x\right)^{3}x^{15}}{175616}
Expand
-\frac{64x^{18}}{343}+\frac{6x^{17}}{7}-\frac{21x^{16}}{16}+\frac{343x^{15}}{512}
Graph
Share
Copied to clipboard
\frac{343}{512}\left(x^{5}\right)^{3}-\frac{21}{16}\left(x^{5}\right)^{2}x^{6}+\frac{6}{7}x^{5}\left(x^{6}\right)^{2}-\frac{64}{343}\left(x^{6}\right)^{3}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(\frac{7}{8}x^{5}-\frac{4}{7}x^{6}\right)^{3}.
\frac{343}{512}x^{15}-\frac{21}{16}\left(x^{5}\right)^{2}x^{6}+\frac{6}{7}x^{5}\left(x^{6}\right)^{2}-\frac{64}{343}\left(x^{6}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{343}{512}x^{15}-\frac{21}{16}x^{10}x^{6}+\frac{6}{7}x^{5}\left(x^{6}\right)^{2}-\frac{64}{343}\left(x^{6}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{343}{512}x^{15}-\frac{21}{16}x^{16}+\frac{6}{7}x^{5}\left(x^{6}\right)^{2}-\frac{64}{343}\left(x^{6}\right)^{3}
To multiply powers of the same base, add their exponents. Add 10 and 6 to get 16.
\frac{343}{512}x^{15}-\frac{21}{16}x^{16}+\frac{6}{7}x^{5}x^{12}-\frac{64}{343}\left(x^{6}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
\frac{343}{512}x^{15}-\frac{21}{16}x^{16}+\frac{6}{7}x^{17}-\frac{64}{343}\left(x^{6}\right)^{3}
To multiply powers of the same base, add their exponents. Add 5 and 12 to get 17.
\frac{343}{512}x^{15}-\frac{21}{16}x^{16}+\frac{6}{7}x^{17}-\frac{64}{343}x^{18}
To raise a power to another power, multiply the exponents. Multiply 6 and 3 to get 18.
\frac{343}{512}\left(x^{5}\right)^{3}-\frac{21}{16}\left(x^{5}\right)^{2}x^{6}+\frac{6}{7}x^{5}\left(x^{6}\right)^{2}-\frac{64}{343}\left(x^{6}\right)^{3}
Use binomial theorem \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} to expand \left(\frac{7}{8}x^{5}-\frac{4}{7}x^{6}\right)^{3}.
\frac{343}{512}x^{15}-\frac{21}{16}\left(x^{5}\right)^{2}x^{6}+\frac{6}{7}x^{5}\left(x^{6}\right)^{2}-\frac{64}{343}\left(x^{6}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 3 to get 15.
\frac{343}{512}x^{15}-\frac{21}{16}x^{10}x^{6}+\frac{6}{7}x^{5}\left(x^{6}\right)^{2}-\frac{64}{343}\left(x^{6}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 5 and 2 to get 10.
\frac{343}{512}x^{15}-\frac{21}{16}x^{16}+\frac{6}{7}x^{5}\left(x^{6}\right)^{2}-\frac{64}{343}\left(x^{6}\right)^{3}
To multiply powers of the same base, add their exponents. Add 10 and 6 to get 16.
\frac{343}{512}x^{15}-\frac{21}{16}x^{16}+\frac{6}{7}x^{5}x^{12}-\frac{64}{343}\left(x^{6}\right)^{3}
To raise a power to another power, multiply the exponents. Multiply 6 and 2 to get 12.
\frac{343}{512}x^{15}-\frac{21}{16}x^{16}+\frac{6}{7}x^{17}-\frac{64}{343}\left(x^{6}\right)^{3}
To multiply powers of the same base, add their exponents. Add 5 and 12 to get 17.
\frac{343}{512}x^{15}-\frac{21}{16}x^{16}+\frac{6}{7}x^{17}-\frac{64}{343}x^{18}
To raise a power to another power, multiply the exponents. Multiply 6 and 3 to get 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}