Solve for x
x = \frac{3 \sqrt{73} + 41}{16} \approx 4.164500702
x=\frac{41-3\sqrt{73}}{16}\approx 0.960499298
Graph
Share
Copied to clipboard
\left(\frac{4}{3}x-\frac{8}{3}\right)^{2}=2x
Use the distributive property to multiply \frac{4}{3} by x-2.
\frac{16}{9}x^{2}-\frac{64}{9}x+\frac{64}{9}=2x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{4}{3}x-\frac{8}{3}\right)^{2}.
\frac{16}{9}x^{2}-\frac{64}{9}x+\frac{64}{9}-2x=0
Subtract 2x from both sides.
\frac{16}{9}x^{2}-\frac{82}{9}x+\frac{64}{9}=0
Combine -\frac{64}{9}x and -2x to get -\frac{82}{9}x.
x=\frac{-\left(-\frac{82}{9}\right)±\sqrt{\left(-\frac{82}{9}\right)^{2}-4\times \frac{16}{9}\times \frac{64}{9}}}{2\times \frac{16}{9}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{16}{9} for a, -\frac{82}{9} for b, and \frac{64}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{82}{9}\right)±\sqrt{\frac{6724}{81}-4\times \frac{16}{9}\times \frac{64}{9}}}{2\times \frac{16}{9}}
Square -\frac{82}{9} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{82}{9}\right)±\sqrt{\frac{6724}{81}-\frac{64}{9}\times \frac{64}{9}}}{2\times \frac{16}{9}}
Multiply -4 times \frac{16}{9}.
x=\frac{-\left(-\frac{82}{9}\right)±\sqrt{\frac{6724-4096}{81}}}{2\times \frac{16}{9}}
Multiply -\frac{64}{9} times \frac{64}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{82}{9}\right)±\sqrt{\frac{292}{9}}}{2\times \frac{16}{9}}
Add \frac{6724}{81} to -\frac{4096}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{82}{9}\right)±\frac{2\sqrt{73}}{3}}{2\times \frac{16}{9}}
Take the square root of \frac{292}{9}.
x=\frac{\frac{82}{9}±\frac{2\sqrt{73}}{3}}{2\times \frac{16}{9}}
The opposite of -\frac{82}{9} is \frac{82}{9}.
x=\frac{\frac{82}{9}±\frac{2\sqrt{73}}{3}}{\frac{32}{9}}
Multiply 2 times \frac{16}{9}.
x=\frac{\frac{2\sqrt{73}}{3}+\frac{82}{9}}{\frac{32}{9}}
Now solve the equation x=\frac{\frac{82}{9}±\frac{2\sqrt{73}}{3}}{\frac{32}{9}} when ± is plus. Add \frac{82}{9} to \frac{2\sqrt{73}}{3}.
x=\frac{3\sqrt{73}+41}{16}
Divide \frac{82}{9}+\frac{2\sqrt{73}}{3} by \frac{32}{9} by multiplying \frac{82}{9}+\frac{2\sqrt{73}}{3} by the reciprocal of \frac{32}{9}.
x=\frac{-\frac{2\sqrt{73}}{3}+\frac{82}{9}}{\frac{32}{9}}
Now solve the equation x=\frac{\frac{82}{9}±\frac{2\sqrt{73}}{3}}{\frac{32}{9}} when ± is minus. Subtract \frac{2\sqrt{73}}{3} from \frac{82}{9}.
x=\frac{41-3\sqrt{73}}{16}
Divide \frac{82}{9}-\frac{2\sqrt{73}}{3} by \frac{32}{9} by multiplying \frac{82}{9}-\frac{2\sqrt{73}}{3} by the reciprocal of \frac{32}{9}.
x=\frac{3\sqrt{73}+41}{16} x=\frac{41-3\sqrt{73}}{16}
The equation is now solved.
\left(\frac{4}{3}x-\frac{8}{3}\right)^{2}=2x
Use the distributive property to multiply \frac{4}{3} by x-2.
\frac{16}{9}x^{2}-\frac{64}{9}x+\frac{64}{9}=2x
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{4}{3}x-\frac{8}{3}\right)^{2}.
\frac{16}{9}x^{2}-\frac{64}{9}x+\frac{64}{9}-2x=0
Subtract 2x from both sides.
\frac{16}{9}x^{2}-\frac{82}{9}x+\frac{64}{9}=0
Combine -\frac{64}{9}x and -2x to get -\frac{82}{9}x.
\frac{16}{9}x^{2}-\frac{82}{9}x=-\frac{64}{9}
Subtract \frac{64}{9} from both sides. Anything subtracted from zero gives its negation.
\frac{\frac{16}{9}x^{2}-\frac{82}{9}x}{\frac{16}{9}}=-\frac{\frac{64}{9}}{\frac{16}{9}}
Divide both sides of the equation by \frac{16}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{82}{9}}{\frac{16}{9}}\right)x=-\frac{\frac{64}{9}}{\frac{16}{9}}
Dividing by \frac{16}{9} undoes the multiplication by \frac{16}{9}.
x^{2}-\frac{41}{8}x=-\frac{\frac{64}{9}}{\frac{16}{9}}
Divide -\frac{82}{9} by \frac{16}{9} by multiplying -\frac{82}{9} by the reciprocal of \frac{16}{9}.
x^{2}-\frac{41}{8}x=-4
Divide -\frac{64}{9} by \frac{16}{9} by multiplying -\frac{64}{9} by the reciprocal of \frac{16}{9}.
x^{2}-\frac{41}{8}x+\left(-\frac{41}{16}\right)^{2}=-4+\left(-\frac{41}{16}\right)^{2}
Divide -\frac{41}{8}, the coefficient of the x term, by 2 to get -\frac{41}{16}. Then add the square of -\frac{41}{16} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{41}{8}x+\frac{1681}{256}=-4+\frac{1681}{256}
Square -\frac{41}{16} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{41}{8}x+\frac{1681}{256}=\frac{657}{256}
Add -4 to \frac{1681}{256}.
\left(x-\frac{41}{16}\right)^{2}=\frac{657}{256}
Factor x^{2}-\frac{41}{8}x+\frac{1681}{256}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{41}{16}\right)^{2}}=\sqrt{\frac{657}{256}}
Take the square root of both sides of the equation.
x-\frac{41}{16}=\frac{3\sqrt{73}}{16} x-\frac{41}{16}=-\frac{3\sqrt{73}}{16}
Simplify.
x=\frac{3\sqrt{73}+41}{16} x=\frac{41-3\sqrt{73}}{16}
Add \frac{41}{16} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}