Evaluate
\frac{3t^{4}}{4000}-\frac{t^{3}}{300}-\frac{3t^{2}}{20}+4t
Factor
\frac{t\left(9t^{3}-40t^{2}-1800t+48000\right)}{12000}
Share
Copied to clipboard
\frac{3}{4000}t^{4}-\frac{1}{3}\times 0.01t^{3}-\frac{1}{2}\times 0.3t^{2}+4t
Multiply \frac{3}{4} and 0.001 to get \frac{3}{4000}.
\frac{3}{4000}t^{4}-\frac{1}{300}t^{3}-\frac{1}{2}\times 0.3t^{2}+4t
Multiply \frac{1}{3} and 0.01 to get \frac{1}{300}.
\frac{3}{4000}t^{4}-\frac{1}{300}t^{3}-\frac{3}{20}t^{2}+4t
Multiply \frac{1}{2} and 0.3 to get \frac{3}{20}.
factor(\frac{3}{4000}t^{4}-\frac{1}{3}\times 0.01t^{3}-\frac{1}{2}\times 0.3t^{2}+4t)
Multiply \frac{3}{4} and 0.001 to get \frac{3}{4000}.
factor(\frac{3}{4000}t^{4}-\frac{1}{300}t^{3}-\frac{1}{2}\times 0.3t^{2}+4t)
Multiply \frac{1}{3} and 0.01 to get \frac{1}{300}.
factor(\frac{3}{4000}t^{4}-\frac{1}{300}t^{3}-\frac{3}{20}t^{2}+4t)
Multiply \frac{1}{2} and 0.3 to get \frac{3}{20}.
\frac{9t^{4}-40t^{3}-1800t^{2}+48000t}{12000}
Factor out \frac{1}{12000}.
t\left(9t^{3}-40t^{2}-1800t+48000\right)
Consider 9t^{4}-40t^{3}-1800t^{2}+48000t. Factor out t.
\frac{t\left(9t^{3}-40t^{2}-1800t+48000\right)}{12000}
Rewrite the complete factored expression. Polynomial 9t^{3}-40t^{2}-1800t+48000 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}