Evaluate
-\frac{253}{625}+\frac{204}{625}i=-0.4048+0.3264i
Real Part
-\frac{253}{625} = -0.4048
Share
Copied to clipboard
\left(\frac{\left(3+2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\right)^{2}
Multiply both numerator and denominator of \frac{3+2i}{4-3i} by the complex conjugate of the denominator, 4+3i.
\left(\frac{6+17i}{25}\right)^{2}
Do the multiplications in \frac{\left(3+2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}.
\left(\frac{6}{25}+\frac{17}{25}i\right)^{2}
Divide 6+17i by 25 to get \frac{6}{25}+\frac{17}{25}i.
-\frac{253}{625}+\frac{204}{625}i
Calculate \frac{6}{25}+\frac{17}{25}i to the power of 2 and get -\frac{253}{625}+\frac{204}{625}i.
Re(\left(\frac{\left(3+2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\right)^{2})
Multiply both numerator and denominator of \frac{3+2i}{4-3i} by the complex conjugate of the denominator, 4+3i.
Re(\left(\frac{6+17i}{25}\right)^{2})
Do the multiplications in \frac{\left(3+2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}.
Re(\left(\frac{6}{25}+\frac{17}{25}i\right)^{2})
Divide 6+17i by 25 to get \frac{6}{25}+\frac{17}{25}i.
Re(-\frac{253}{625}+\frac{204}{625}i)
Calculate \frac{6}{25}+\frac{17}{25}i to the power of 2 and get -\frac{253}{625}+\frac{204}{625}i.
-\frac{253}{625}
The real part of -\frac{253}{625}+\frac{204}{625}i is -\frac{253}{625}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}