Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{\left(3+2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\right)^{2}
Multiply both numerator and denominator of \frac{3+2i}{4-3i} by the complex conjugate of the denominator, 4+3i.
\left(\frac{6+17i}{25}\right)^{2}
Do the multiplications in \frac{\left(3+2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}.
\left(\frac{6}{25}+\frac{17}{25}i\right)^{2}
Divide 6+17i by 25 to get \frac{6}{25}+\frac{17}{25}i.
-\frac{253}{625}+\frac{204}{625}i
Calculate \frac{6}{25}+\frac{17}{25}i to the power of 2 and get -\frac{253}{625}+\frac{204}{625}i.
Re(\left(\frac{\left(3+2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}\right)^{2})
Multiply both numerator and denominator of \frac{3+2i}{4-3i} by the complex conjugate of the denominator, 4+3i.
Re(\left(\frac{6+17i}{25}\right)^{2})
Do the multiplications in \frac{\left(3+2i\right)\left(4+3i\right)}{\left(4-3i\right)\left(4+3i\right)}.
Re(\left(\frac{6}{25}+\frac{17}{25}i\right)^{2})
Divide 6+17i by 25 to get \frac{6}{25}+\frac{17}{25}i.
Re(-\frac{253}{625}+\frac{204}{625}i)
Calculate \frac{6}{25}+\frac{17}{25}i to the power of 2 and get -\frac{253}{625}+\frac{204}{625}i.
-\frac{253}{625}
The real part of -\frac{253}{625}+\frac{204}{625}i is -\frac{253}{625}.