Evaluate
\frac{23}{12}\approx 1.916666667
Factor
\frac{23}{2 ^ {2} \cdot 3} = 1\frac{11}{12} = 1.9166666666666667
Share
Copied to clipboard
\frac{25\times 2}{8\times 5}-\frac{3}{5}\times \frac{-10}{9}
Multiply \frac{25}{8} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{50}{40}-\frac{3}{5}\times \frac{-10}{9}
Do the multiplications in the fraction \frac{25\times 2}{8\times 5}.
\frac{5}{4}-\frac{3}{5}\times \frac{-10}{9}
Reduce the fraction \frac{50}{40} to lowest terms by extracting and canceling out 10.
\frac{5}{4}-\frac{3}{5}\left(-\frac{10}{9}\right)
Fraction \frac{-10}{9} can be rewritten as -\frac{10}{9} by extracting the negative sign.
\frac{5}{4}-\frac{3\left(-10\right)}{5\times 9}
Multiply \frac{3}{5} times -\frac{10}{9} by multiplying numerator times numerator and denominator times denominator.
\frac{5}{4}-\frac{-30}{45}
Do the multiplications in the fraction \frac{3\left(-10\right)}{5\times 9}.
\frac{5}{4}-\left(-\frac{2}{3}\right)
Reduce the fraction \frac{-30}{45} to lowest terms by extracting and canceling out 15.
\frac{5}{4}+\frac{2}{3}
The opposite of -\frac{2}{3} is \frac{2}{3}.
\frac{15}{12}+\frac{8}{12}
Least common multiple of 4 and 3 is 12. Convert \frac{5}{4} and \frac{2}{3} to fractions with denominator 12.
\frac{15+8}{12}
Since \frac{15}{12} and \frac{8}{12} have the same denominator, add them by adding their numerators.
\frac{23}{12}
Add 15 and 8 to get 23.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}