Evaluate
\frac{5}{2}=2.5
Factor
\frac{5}{2} = 2\frac{1}{2} = 2.5
Share
Copied to clipboard
\frac{\frac{2}{5}\left(\frac{1}{2}-\frac{2}{2}\right)+\left(\frac{6}{5}\right)^{2}}{\frac{1}{2}}+2\left(-\frac{1}{10}\right)^{2}
Convert 1 to fraction \frac{2}{2}.
\frac{\frac{2}{5}\times \frac{1-2}{2}+\left(\frac{6}{5}\right)^{2}}{\frac{1}{2}}+2\left(-\frac{1}{10}\right)^{2}
Since \frac{1}{2} and \frac{2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{2}{5}\left(-\frac{1}{2}\right)+\left(\frac{6}{5}\right)^{2}}{\frac{1}{2}}+2\left(-\frac{1}{10}\right)^{2}
Subtract 2 from 1 to get -1.
\frac{\frac{2\left(-1\right)}{5\times 2}+\left(\frac{6}{5}\right)^{2}}{\frac{1}{2}}+2\left(-\frac{1}{10}\right)^{2}
Multiply \frac{2}{5} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-1}{5}+\left(\frac{6}{5}\right)^{2}}{\frac{1}{2}}+2\left(-\frac{1}{10}\right)^{2}
Cancel out 2 in both numerator and denominator.
\frac{-\frac{1}{5}+\left(\frac{6}{5}\right)^{2}}{\frac{1}{2}}+2\left(-\frac{1}{10}\right)^{2}
Fraction \frac{-1}{5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
\frac{-\frac{1}{5}+\frac{36}{25}}{\frac{1}{2}}+2\left(-\frac{1}{10}\right)^{2}
Calculate \frac{6}{5} to the power of 2 and get \frac{36}{25}.
\frac{-\frac{5}{25}+\frac{36}{25}}{\frac{1}{2}}+2\left(-\frac{1}{10}\right)^{2}
Least common multiple of 5 and 25 is 25. Convert -\frac{1}{5} and \frac{36}{25} to fractions with denominator 25.
\frac{\frac{-5+36}{25}}{\frac{1}{2}}+2\left(-\frac{1}{10}\right)^{2}
Since -\frac{5}{25} and \frac{36}{25} have the same denominator, add them by adding their numerators.
\frac{\frac{31}{25}}{\frac{1}{2}}+2\left(-\frac{1}{10}\right)^{2}
Add -5 and 36 to get 31.
\frac{31}{25}\times 2+2\left(-\frac{1}{10}\right)^{2}
Divide \frac{31}{25} by \frac{1}{2} by multiplying \frac{31}{25} by the reciprocal of \frac{1}{2}.
\frac{31\times 2}{25}+2\left(-\frac{1}{10}\right)^{2}
Express \frac{31}{25}\times 2 as a single fraction.
\frac{62}{25}+2\left(-\frac{1}{10}\right)^{2}
Multiply 31 and 2 to get 62.
\frac{62}{25}+2\times \frac{1}{100}
Calculate -\frac{1}{10} to the power of 2 and get \frac{1}{100}.
\frac{62}{25}+\frac{2}{100}
Multiply 2 and \frac{1}{100} to get \frac{2}{100}.
\frac{62}{25}+\frac{1}{50}
Reduce the fraction \frac{2}{100} to lowest terms by extracting and canceling out 2.
\frac{124}{50}+\frac{1}{50}
Least common multiple of 25 and 50 is 50. Convert \frac{62}{25} and \frac{1}{50} to fractions with denominator 50.
\frac{124+1}{50}
Since \frac{124}{50} and \frac{1}{50} have the same denominator, add them by adding their numerators.
\frac{125}{50}
Add 124 and 1 to get 125.
\frac{5}{2}
Reduce the fraction \frac{125}{50} to lowest terms by extracting and canceling out 25.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}