Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(\frac{a-2}{\left(a-2\right)\left(a-1\right)}+\frac{a-1}{\left(a-2\right)\left(a-1\right)}-\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(\frac{1}{a-1}-\frac{1}{2-a}+\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(a^{2}-3a+2\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a-2 is \left(a-2\right)\left(a-1\right). Multiply \frac{1}{a-1} times \frac{a-2}{a-2}. Multiply \frac{1}{a-2} times \frac{a-1}{a-1}.
\left(\frac{a-2+a-1}{\left(a-2\right)\left(a-1\right)}-\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(\frac{1}{a-1}-\frac{1}{2-a}+\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(a^{2}-3a+2\right)
Since \frac{a-2}{\left(a-2\right)\left(a-1\right)} and \frac{a-1}{\left(a-2\right)\left(a-1\right)} have the same denominator, add them by adding their numerators.
\left(\frac{2a-3}{\left(a-2\right)\left(a-1\right)}-\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(\frac{1}{a-1}-\frac{1}{2-a}+\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(a^{2}-3a+2\right)
Combine like terms in a-2+a-1.
\left(\frac{2a-3}{\left(a-2\right)\left(a-1\right)}-\frac{-1}{\left(a-2\right)\left(a-1\right)}\right)\left(\frac{1}{a-1}-\frac{1}{2-a}+\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(a^{2}-3a+2\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-2\right)\left(a-1\right) and \left(1-a\right)\left(a-2\right) is \left(a-2\right)\left(a-1\right). Multiply \frac{1}{\left(1-a\right)\left(a-2\right)} times \frac{-1}{-1}.
\frac{2a-3-\left(-1\right)}{\left(a-2\right)\left(a-1\right)}\left(\frac{1}{a-1}-\frac{1}{2-a}+\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(a^{2}-3a+2\right)
Since \frac{2a-3}{\left(a-2\right)\left(a-1\right)} and \frac{-1}{\left(a-2\right)\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2a-3+1}{\left(a-2\right)\left(a-1\right)}\left(\frac{1}{a-1}-\frac{1}{2-a}+\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(a^{2}-3a+2\right)
Do the multiplications in 2a-3-\left(-1\right).
\frac{2a-2}{\left(a-2\right)\left(a-1\right)}\left(\frac{1}{a-1}-\frac{1}{2-a}+\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(a^{2}-3a+2\right)
Combine like terms in 2a-3+1.
\frac{2\left(a-1\right)}{\left(a-2\right)\left(a-1\right)}\left(\frac{1}{a-1}-\frac{1}{2-a}+\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(a^{2}-3a+2\right)
Factor the expressions that are not already factored in \frac{2a-2}{\left(a-2\right)\left(a-1\right)}.
\frac{2}{a-2}\left(\frac{1}{a-1}-\frac{1}{2-a}+\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(a^{2}-3a+2\right)
Cancel out a-1 in both numerator and denominator.
\frac{2}{a-2}\left(\frac{-a+2}{\left(a-1\right)\left(-a+2\right)}-\frac{a-1}{\left(a-1\right)\left(-a+2\right)}+\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(a^{2}-3a+2\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and 2-a is \left(a-1\right)\left(-a+2\right). Multiply \frac{1}{a-1} times \frac{-a+2}{-a+2}. Multiply \frac{1}{2-a} times \frac{a-1}{a-1}.
\frac{2}{a-2}\left(\frac{-a+2-\left(a-1\right)}{\left(a-1\right)\left(-a+2\right)}+\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(a^{2}-3a+2\right)
Since \frac{-a+2}{\left(a-1\right)\left(-a+2\right)} and \frac{a-1}{\left(a-1\right)\left(-a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{a-2}\left(\frac{-a+2-a+1}{\left(a-1\right)\left(-a+2\right)}+\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(a^{2}-3a+2\right)
Do the multiplications in -a+2-\left(a-1\right).
\frac{2}{a-2}\left(\frac{-2a+3}{\left(a-1\right)\left(-a+2\right)}+\frac{1}{\left(1-a\right)\left(a-2\right)}\right)\left(a^{2}-3a+2\right)
Combine like terms in -a+2-a+1.
\frac{2}{a-2}\left(\frac{-\left(-2a+3\right)}{\left(a-2\right)\left(a-1\right)}+\frac{-1}{\left(a-2\right)\left(a-1\right)}\right)\left(a^{2}-3a+2\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-1\right)\left(-a+2\right) and \left(1-a\right)\left(a-2\right) is \left(a-2\right)\left(a-1\right). Multiply \frac{-2a+3}{\left(a-1\right)\left(-a+2\right)} times \frac{-1}{-1}. Multiply \frac{1}{\left(1-a\right)\left(a-2\right)} times \frac{-1}{-1}.
\frac{2}{a-2}\times \frac{-\left(-2a+3\right)-1}{\left(a-2\right)\left(a-1\right)}\left(a^{2}-3a+2\right)
Since \frac{-\left(-2a+3\right)}{\left(a-2\right)\left(a-1\right)} and \frac{-1}{\left(a-2\right)\left(a-1\right)} have the same denominator, add them by adding their numerators.
\frac{2}{a-2}\times \frac{2a-3-1}{\left(a-2\right)\left(a-1\right)}\left(a^{2}-3a+2\right)
Do the multiplications in -\left(-2a+3\right)-1.
\frac{2}{a-2}\times \frac{2a-4}{\left(a-2\right)\left(a-1\right)}\left(a^{2}-3a+2\right)
Combine like terms in 2a-3-1.
\frac{2}{a-2}\times \frac{2\left(a-2\right)}{\left(a-2\right)\left(a-1\right)}\left(a^{2}-3a+2\right)
Factor the expressions that are not already factored in \frac{2a-4}{\left(a-2\right)\left(a-1\right)}.
\frac{2}{a-2}\times \frac{2}{a-1}\left(a^{2}-3a+2\right)
Cancel out a-2 in both numerator and denominator.
\frac{2\times 2}{\left(a-2\right)\left(a-1\right)}\left(a^{2}-3a+2\right)
Multiply \frac{2}{a-2} times \frac{2}{a-1} by multiplying numerator times numerator and denominator times denominator.
\frac{2\times 2\left(a^{2}-3a+2\right)}{\left(a-2\right)\left(a-1\right)}
Express \frac{2\times 2}{\left(a-2\right)\left(a-1\right)}\left(a^{2}-3a+2\right) as a single fraction.
\frac{4\left(a^{2}-3a+2\right)}{\left(a-2\right)\left(a-1\right)}
Multiply 2 and 2 to get 4.
\frac{4\left(a-2\right)\left(a-1\right)}{\left(a-2\right)\left(a-1\right)}
Factor the expressions that are not already factored.
4
Cancel out \left(a-2\right)\left(a-1\right) in both numerator and denominator.