Evaluate
\frac{n+N+2}{4}
Expand
\frac{N}{4}+\frac{n}{4}+\frac{1}{2}
Share
Copied to clipboard
\frac{1}{4}N+\frac{1}{4}-\frac{1}{2}+\frac{1}{4}\left(n+1\right)+\frac{1}{2}
Use the distributive property to multiply \frac{1}{4} by N+1.
\frac{1}{4}N+\frac{1}{4}-\frac{2}{4}+\frac{1}{4}\left(n+1\right)+\frac{1}{2}
Least common multiple of 4 and 2 is 4. Convert \frac{1}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{1}{4}N+\frac{1-2}{4}+\frac{1}{4}\left(n+1\right)+\frac{1}{2}
Since \frac{1}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}N-\frac{1}{4}+\frac{1}{4}\left(n+1\right)+\frac{1}{2}
Subtract 2 from 1 to get -1.
\frac{1}{4}N-\frac{1}{4}+\frac{1}{4}n+\frac{1}{4}+\frac{1}{2}
Use the distributive property to multiply \frac{1}{4} by n+1.
\frac{1}{4}N+\frac{1}{4}n+\frac{1}{2}
Add -\frac{1}{4} and \frac{1}{4} to get 0.
\frac{1}{4}N+\frac{1}{4}-\frac{1}{2}+\frac{1}{4}\left(n+1\right)+\frac{1}{2}
Use the distributive property to multiply \frac{1}{4} by N+1.
\frac{1}{4}N+\frac{1}{4}-\frac{2}{4}+\frac{1}{4}\left(n+1\right)+\frac{1}{2}
Least common multiple of 4 and 2 is 4. Convert \frac{1}{4} and \frac{1}{2} to fractions with denominator 4.
\frac{1}{4}N+\frac{1-2}{4}+\frac{1}{4}\left(n+1\right)+\frac{1}{2}
Since \frac{1}{4} and \frac{2}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}N-\frac{1}{4}+\frac{1}{4}\left(n+1\right)+\frac{1}{2}
Subtract 2 from 1 to get -1.
\frac{1}{4}N-\frac{1}{4}+\frac{1}{4}n+\frac{1}{4}+\frac{1}{2}
Use the distributive property to multiply \frac{1}{4} by n+1.
\frac{1}{4}N+\frac{1}{4}n+\frac{1}{2}
Add -\frac{1}{4} and \frac{1}{4} to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}