Evaluate
-\frac{3}{2}=-1.5
Factor
-\frac{3}{2} = -1\frac{1}{2} = -1.5
Share
Copied to clipboard
\frac{4}{12}-\frac{9}{12}-\left(\frac{1}{3}+\frac{3}{4}\right)
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{3}{4} to fractions with denominator 12.
\frac{4-9}{12}-\left(\frac{1}{3}+\frac{3}{4}\right)
Since \frac{4}{12} and \frac{9}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{12}-\left(\frac{1}{3}+\frac{3}{4}\right)
Subtract 9 from 4 to get -5.
-\frac{5}{12}-\left(\frac{4}{12}+\frac{9}{12}\right)
Least common multiple of 3 and 4 is 12. Convert \frac{1}{3} and \frac{3}{4} to fractions with denominator 12.
-\frac{5}{12}-\frac{4+9}{12}
Since \frac{4}{12} and \frac{9}{12} have the same denominator, add them by adding their numerators.
-\frac{5}{12}-\frac{13}{12}
Add 4 and 9 to get 13.
\frac{-5-13}{12}
Since -\frac{5}{12} and \frac{13}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{-18}{12}
Subtract 13 from -5 to get -18.
-\frac{3}{2}
Reduce the fraction \frac{-18}{12} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}