Evaluate
\frac{5}{4}=1.25
Factor
\frac{5}{2 ^ {2}} = 1\frac{1}{4} = 1.25
Share
Copied to clipboard
\frac{\frac{1}{2}+\frac{1}{2}\left(1+\frac{2\times 5}{6}\right)}{2-\frac{1}{6}}+\left(\frac{1}{2}\right)^{2}
Express 2\times \frac{5}{6} as a single fraction.
\frac{\frac{1}{2}+\frac{1}{2}\left(1+\frac{10}{6}\right)}{2-\frac{1}{6}}+\left(\frac{1}{2}\right)^{2}
Multiply 2 and 5 to get 10.
\frac{\frac{1}{2}+\frac{1}{2}\left(1+\frac{5}{3}\right)}{2-\frac{1}{6}}+\left(\frac{1}{2}\right)^{2}
Reduce the fraction \frac{10}{6} to lowest terms by extracting and canceling out 2.
\frac{\frac{1}{2}+\frac{1}{2}\left(\frac{3}{3}+\frac{5}{3}\right)}{2-\frac{1}{6}}+\left(\frac{1}{2}\right)^{2}
Convert 1 to fraction \frac{3}{3}.
\frac{\frac{1}{2}+\frac{1}{2}\times \frac{3+5}{3}}{2-\frac{1}{6}}+\left(\frac{1}{2}\right)^{2}
Since \frac{3}{3} and \frac{5}{3} have the same denominator, add them by adding their numerators.
\frac{\frac{1}{2}+\frac{1}{2}\times \frac{8}{3}}{2-\frac{1}{6}}+\left(\frac{1}{2}\right)^{2}
Add 3 and 5 to get 8.
\frac{\frac{1}{2}+\frac{1\times 8}{2\times 3}}{2-\frac{1}{6}}+\left(\frac{1}{2}\right)^{2}
Multiply \frac{1}{2} times \frac{8}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{1}{2}+\frac{8}{6}}{2-\frac{1}{6}}+\left(\frac{1}{2}\right)^{2}
Do the multiplications in the fraction \frac{1\times 8}{2\times 3}.
\frac{\frac{1}{2}+\frac{4}{3}}{2-\frac{1}{6}}+\left(\frac{1}{2}\right)^{2}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
\frac{\frac{3}{6}+\frac{8}{6}}{2-\frac{1}{6}}+\left(\frac{1}{2}\right)^{2}
Least common multiple of 2 and 3 is 6. Convert \frac{1}{2} and \frac{4}{3} to fractions with denominator 6.
\frac{\frac{3+8}{6}}{2-\frac{1}{6}}+\left(\frac{1}{2}\right)^{2}
Since \frac{3}{6} and \frac{8}{6} have the same denominator, add them by adding their numerators.
\frac{\frac{11}{6}}{2-\frac{1}{6}}+\left(\frac{1}{2}\right)^{2}
Add 3 and 8 to get 11.
\frac{\frac{11}{6}}{\frac{12}{6}-\frac{1}{6}}+\left(\frac{1}{2}\right)^{2}
Convert 2 to fraction \frac{12}{6}.
\frac{\frac{11}{6}}{\frac{12-1}{6}}+\left(\frac{1}{2}\right)^{2}
Since \frac{12}{6} and \frac{1}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{11}{6}}{\frac{11}{6}}+\left(\frac{1}{2}\right)^{2}
Subtract 1 from 12 to get 11.
1+\left(\frac{1}{2}\right)^{2}
Divide \frac{11}{6} by \frac{11}{6} to get 1.
1+\frac{1}{4}
Calculate \frac{1}{2} to the power of 2 and get \frac{1}{4}.
\frac{4}{4}+\frac{1}{4}
Convert 1 to fraction \frac{4}{4}.
\frac{4+1}{4}
Since \frac{4}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
\frac{5}{4}
Add 4 and 1 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}