Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-3x^{2}-2x+1
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-2 ab=-3=-3
Factor the expression by grouping. First, the expression needs to be rewritten as -3x^{2}+ax+bx+1. To find a and b, set up a system to be solved.
a=1 b=-3
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. The only such pair is the system solution.
\left(-3x^{2}+x\right)+\left(-3x+1\right)
Rewrite -3x^{2}-2x+1 as \left(-3x^{2}+x\right)+\left(-3x+1\right).
-x\left(3x-1\right)-\left(3x-1\right)
Factor out -x in the first and -1 in the second group.
\left(3x-1\right)\left(-x-1\right)
Factor out common term 3x-1 by using distributive property.
-3x^{2}-2x+1=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2\left(-3\right)}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2\left(-3\right)}
Add 4 to 12.
x=\frac{-\left(-2\right)±4}{2\left(-3\right)}
Take the square root of 16.
x=\frac{2±4}{2\left(-3\right)}
The opposite of -2 is 2.
x=\frac{2±4}{-6}
Multiply 2 times -3.
x=\frac{6}{-6}
Now solve the equation x=\frac{2±4}{-6} when ± is plus. Add 2 to 4.
x=-1
Divide 6 by -6.
x=-\frac{2}{-6}
Now solve the equation x=\frac{2±4}{-6} when ± is minus. Subtract 4 from 2.
x=\frac{1}{3}
Reduce the fraction \frac{-2}{-6} to lowest terms by extracting and canceling out 2.
-3x^{2}-2x+1=-3\left(x-\left(-1\right)\right)\left(x-\frac{1}{3}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1 for x_{1} and \frac{1}{3} for x_{2}.
-3x^{2}-2x+1=-3\left(x+1\right)\left(x-\frac{1}{3}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
-3x^{2}-2x+1=-3\left(x+1\right)\times \frac{-3x+1}{-3}
Subtract \frac{1}{3} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
-3x^{2}-2x+1=\left(x+1\right)\left(-3x+1\right)
Cancel out 3, the greatest common factor in -3 and 3.