Solve for p
p=\frac{100}{t}
t\neq 0
Solve for t
t=\frac{100}{p}
p\neq 0
Share
Copied to clipboard
pt=\frac{1000}{1+9e^{0t}}
Multiply 0 and 1656 to get 0.
pt=\frac{1000}{1+9e^{0}}
Anything times zero gives zero.
pt=\frac{1000}{1+9\times 1}
Calculate e to the power of 0 and get 1.
pt=\frac{1000}{1+9}
Multiply 9 and 1 to get 9.
pt=\frac{1000}{10}
Add 1 and 9 to get 10.
pt=100
Divide 1000 by 10 to get 100.
tp=100
The equation is in standard form.
\frac{tp}{t}=\frac{100}{t}
Divide both sides by t.
p=\frac{100}{t}
Dividing by t undoes the multiplication by t.
pt=\frac{1000}{1+9e^{0t}}
Multiply 0 and 1656 to get 0.
pt=\frac{1000}{1+9e^{0}}
Anything times zero gives zero.
pt=\frac{1000}{1+9\times 1}
Calculate e to the power of 0 and get 1.
pt=\frac{1000}{1+9}
Multiply 9 and 1 to get 9.
pt=\frac{1000}{10}
Add 1 and 9 to get 10.
pt=100
Divide 1000 by 10 to get 100.
\frac{pt}{p}=\frac{100}{p}
Divide both sides by p.
t=\frac{100}{p}
Dividing by p undoes the multiplication by p.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}