Solve for x
x=\frac{39}{\epsilon }
\epsilon \neq 0
Solve for ε
\epsilon =\frac{39}{x}
x\neq 0
Graph
Share
Copied to clipboard
507=\epsilon \left(5+8\right)x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
507=\epsilon \times 13x
Add 5 and 8 to get 13.
\epsilon \times 13x=507
Swap sides so that all variable terms are on the left hand side.
13\epsilon x=507
The equation is in standard form.
\frac{13\epsilon x}{13\epsilon }=\frac{507}{13\epsilon }
Divide both sides by 13\epsilon .
x=\frac{507}{13\epsilon }
Dividing by 13\epsilon undoes the multiplication by 13\epsilon .
x=\frac{39}{\epsilon }
Divide 507 by 13\epsilon .
x=\frac{39}{\epsilon }\text{, }x\neq 0
Variable x cannot be equal to 0.
507=\epsilon \left(5+8\right)x
Multiply both sides of the equation by x.
507=\epsilon \times 13x
Add 5 and 8 to get 13.
\epsilon \times 13x=507
Swap sides so that all variable terms are on the left hand side.
13x\epsilon =507
The equation is in standard form.
\frac{13x\epsilon }{13x}=\frac{507}{13x}
Divide both sides by 13x.
\epsilon =\frac{507}{13x}
Dividing by 13x undoes the multiplication by 13x.
\epsilon =\frac{39}{x}
Divide 507 by 13x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}