Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{28a_{1}-279}{7d}\text{, }&d\neq 0\\b\in \mathrm{C}\text{, }&a_{1}=\frac{279}{28}\text{ and }d=0\end{matrix}\right.
Solve for a_1
a_{1}=-\frac{bd}{4}+\frac{279}{28}
Solve for b
\left\{\begin{matrix}b=-\frac{28a_{1}-279}{7d}\text{, }&d\neq 0\\b\in \mathrm{R}\text{, }&a_{1}=\frac{279}{28}\text{ and }d=0\end{matrix}\right.
Share
Copied to clipboard
4a_{1}+bd=40-\frac{2}{14}
Multiply 10 and 4 to get 40.
4a_{1}+bd=40-\frac{1}{7}
Reduce the fraction \frac{2}{14} to lowest terms by extracting and canceling out 2.
4a_{1}+bd=\frac{279}{7}
Subtract \frac{1}{7} from 40 to get \frac{279}{7}.
bd=\frac{279}{7}-4a_{1}
Subtract 4a_{1} from both sides.
db=\frac{279}{7}-4a_{1}
The equation is in standard form.
\frac{db}{d}=\frac{\frac{279}{7}-4a_{1}}{d}
Divide both sides by d.
b=\frac{\frac{279}{7}-4a_{1}}{d}
Dividing by d undoes the multiplication by d.
b=\frac{279-28a_{1}}{7d}
Divide \frac{279}{7}-4a_{1} by d.
4a_{1}+bd=40-\frac{2}{14}
Multiply 10 and 4 to get 40.
4a_{1}+bd=40-\frac{1}{7}
Reduce the fraction \frac{2}{14} to lowest terms by extracting and canceling out 2.
4a_{1}+bd=\frac{279}{7}
Subtract \frac{1}{7} from 40 to get \frac{279}{7}.
4a_{1}=\frac{279}{7}-bd
Subtract bd from both sides.
\frac{4a_{1}}{4}=\frac{\frac{279}{7}-bd}{4}
Divide both sides by 4.
a_{1}=\frac{\frac{279}{7}-bd}{4}
Dividing by 4 undoes the multiplication by 4.
a_{1}=-\frac{bd}{4}+\frac{279}{28}
Divide \frac{279}{7}-bd by 4.
4a_{1}+bd=40-\frac{2}{14}
Multiply 10 and 4 to get 40.
4a_{1}+bd=40-\frac{1}{7}
Reduce the fraction \frac{2}{14} to lowest terms by extracting and canceling out 2.
4a_{1}+bd=\frac{279}{7}
Subtract \frac{1}{7} from 40 to get \frac{279}{7}.
bd=\frac{279}{7}-4a_{1}
Subtract 4a_{1} from both sides.
db=\frac{279}{7}-4a_{1}
The equation is in standard form.
\frac{db}{d}=\frac{\frac{279}{7}-4a_{1}}{d}
Divide both sides by d.
b=\frac{\frac{279}{7}-4a_{1}}{d}
Dividing by d undoes the multiplication by d.
b=\frac{279-28a_{1}}{7d}
Divide \frac{279}{7}-4a_{1} by d.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}