Evaluate
0
Factor
0
Share
Copied to clipboard
359\sqrt{1-\frac{4}{5}\left(\frac{9}{25}\times \frac{5}{3}+\frac{1}{11}\left(\frac{1}{4}+\frac{3}{2}-\frac{3}{4}\left(\frac{1}{3}-\frac{1}{5}\right)\right)+\frac{1}{2}\right)}
Calculate \frac{3}{5} to the power of 2 and get \frac{9}{25}.
359\sqrt{1-\frac{4}{5}\left(\frac{9\times 5}{25\times 3}+\frac{1}{11}\left(\frac{1}{4}+\frac{3}{2}-\frac{3}{4}\left(\frac{1}{3}-\frac{1}{5}\right)\right)+\frac{1}{2}\right)}
Multiply \frac{9}{25} times \frac{5}{3} by multiplying numerator times numerator and denominator times denominator.
359\sqrt{1-\frac{4}{5}\left(\frac{45}{75}+\frac{1}{11}\left(\frac{1}{4}+\frac{3}{2}-\frac{3}{4}\left(\frac{1}{3}-\frac{1}{5}\right)\right)+\frac{1}{2}\right)}
Do the multiplications in the fraction \frac{9\times 5}{25\times 3}.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1}{11}\left(\frac{1}{4}+\frac{3}{2}-\frac{3}{4}\left(\frac{1}{3}-\frac{1}{5}\right)\right)+\frac{1}{2}\right)}
Reduce the fraction \frac{45}{75} to lowest terms by extracting and canceling out 15.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1}{11}\left(\frac{1}{4}+\frac{6}{4}-\frac{3}{4}\left(\frac{1}{3}-\frac{1}{5}\right)\right)+\frac{1}{2}\right)}
Least common multiple of 4 and 2 is 4. Convert \frac{1}{4} and \frac{3}{2} to fractions with denominator 4.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1}{11}\left(\frac{1+6}{4}-\frac{3}{4}\left(\frac{1}{3}-\frac{1}{5}\right)\right)+\frac{1}{2}\right)}
Since \frac{1}{4} and \frac{6}{4} have the same denominator, add them by adding their numerators.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1}{11}\left(\frac{7}{4}-\frac{3}{4}\left(\frac{1}{3}-\frac{1}{5}\right)\right)+\frac{1}{2}\right)}
Add 1 and 6 to get 7.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1}{11}\left(\frac{7}{4}-\frac{3}{4}\left(\frac{5}{15}-\frac{3}{15}\right)\right)+\frac{1}{2}\right)}
Least common multiple of 3 and 5 is 15. Convert \frac{1}{3} and \frac{1}{5} to fractions with denominator 15.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1}{11}\left(\frac{7}{4}-\frac{3}{4}\times \frac{5-3}{15}\right)+\frac{1}{2}\right)}
Since \frac{5}{15} and \frac{3}{15} have the same denominator, subtract them by subtracting their numerators.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1}{11}\left(\frac{7}{4}-\frac{3}{4}\times \frac{2}{15}\right)+\frac{1}{2}\right)}
Subtract 3 from 5 to get 2.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1}{11}\left(\frac{7}{4}-\frac{3\times 2}{4\times 15}\right)+\frac{1}{2}\right)}
Multiply \frac{3}{4} times \frac{2}{15} by multiplying numerator times numerator and denominator times denominator.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1}{11}\left(\frac{7}{4}-\frac{6}{60}\right)+\frac{1}{2}\right)}
Do the multiplications in the fraction \frac{3\times 2}{4\times 15}.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1}{11}\left(\frac{7}{4}-\frac{1}{10}\right)+\frac{1}{2}\right)}
Reduce the fraction \frac{6}{60} to lowest terms by extracting and canceling out 6.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1}{11}\left(\frac{35}{20}-\frac{2}{20}\right)+\frac{1}{2}\right)}
Least common multiple of 4 and 10 is 20. Convert \frac{7}{4} and \frac{1}{10} to fractions with denominator 20.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1}{11}\times \frac{35-2}{20}+\frac{1}{2}\right)}
Since \frac{35}{20} and \frac{2}{20} have the same denominator, subtract them by subtracting their numerators.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1}{11}\times \frac{33}{20}+\frac{1}{2}\right)}
Subtract 2 from 35 to get 33.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{1\times 33}{11\times 20}+\frac{1}{2}\right)}
Multiply \frac{1}{11} times \frac{33}{20} by multiplying numerator times numerator and denominator times denominator.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{33}{220}+\frac{1}{2}\right)}
Do the multiplications in the fraction \frac{1\times 33}{11\times 20}.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{5}+\frac{3}{20}+\frac{1}{2}\right)}
Reduce the fraction \frac{33}{220} to lowest terms by extracting and canceling out 11.
359\sqrt{1-\frac{4}{5}\left(\frac{12}{20}+\frac{3}{20}+\frac{1}{2}\right)}
Least common multiple of 5 and 20 is 20. Convert \frac{3}{5} and \frac{3}{20} to fractions with denominator 20.
359\sqrt{1-\frac{4}{5}\left(\frac{12+3}{20}+\frac{1}{2}\right)}
Since \frac{12}{20} and \frac{3}{20} have the same denominator, add them by adding their numerators.
359\sqrt{1-\frac{4}{5}\left(\frac{15}{20}+\frac{1}{2}\right)}
Add 12 and 3 to get 15.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{4}+\frac{1}{2}\right)}
Reduce the fraction \frac{15}{20} to lowest terms by extracting and canceling out 5.
359\sqrt{1-\frac{4}{5}\left(\frac{3}{4}+\frac{2}{4}\right)}
Least common multiple of 4 and 2 is 4. Convert \frac{3}{4} and \frac{1}{2} to fractions with denominator 4.
359\sqrt{1-\frac{4}{5}\times \frac{3+2}{4}}
Since \frac{3}{4} and \frac{2}{4} have the same denominator, add them by adding their numerators.
359\sqrt{1-\frac{4}{5}\times \frac{5}{4}}
Add 3 and 2 to get 5.
359\sqrt{1-1}
Cancel out \frac{4}{5} and its reciprocal \frac{5}{4}.
359\sqrt{0}
Subtract 1 from 1 to get 0.
359\times 0
Calculate the square root of 0 and get 0.
0
Multiply 359 and 0 to get 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}