Solve for x
x=\frac{8y+2}{5}
Solve for y
y=\frac{5x}{8}-\frac{1}{4}
Graph
Share
Copied to clipboard
2x-4y+\frac{1}{2}x=1
Add \frac{1}{2}x to both sides.
\frac{5}{2}x-4y=1
Combine 2x and \frac{1}{2}x to get \frac{5}{2}x.
\frac{5}{2}x=1+4y
Add 4y to both sides.
\frac{5}{2}x=4y+1
The equation is in standard form.
\frac{\frac{5}{2}x}{\frac{5}{2}}=\frac{4y+1}{\frac{5}{2}}
Divide both sides of the equation by \frac{5}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{4y+1}{\frac{5}{2}}
Dividing by \frac{5}{2} undoes the multiplication by \frac{5}{2}.
x=\frac{8y+2}{5}
Divide 1+4y by \frac{5}{2} by multiplying 1+4y by the reciprocal of \frac{5}{2}.
-4y=-\frac{1}{2}x+1-2x
Subtract 2x from both sides.
-4y=-\frac{5}{2}x+1
Combine -\frac{1}{2}x and -2x to get -\frac{5}{2}x.
-4y=-\frac{5x}{2}+1
The equation is in standard form.
\frac{-4y}{-4}=\frac{-\frac{5x}{2}+1}{-4}
Divide both sides by -4.
y=\frac{-\frac{5x}{2}+1}{-4}
Dividing by -4 undoes the multiplication by -4.
y=\frac{5x}{8}-\frac{1}{4}
Divide -\frac{5x}{2}+1 by -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}