Skip to main content
Solve for E
Tick mark Image

Similar Problems from Web Search

Share

4+1.2-2.67E^{2}=0
Multiply both sides of the equation by 2.
5.2-2.67E^{2}=0
Add 4 and 1.2 to get 5.2.
-2.67E^{2}=-5.2
Subtract 5.2 from both sides. Anything subtracted from zero gives its negation.
E^{2}=\frac{-5.2}{-2.67}
Divide both sides by -2.67.
E^{2}=\frac{-520}{-267}
Expand \frac{-5.2}{-2.67} by multiplying both numerator and the denominator by 100.
E^{2}=\frac{520}{267}
Fraction \frac{-520}{-267} can be simplified to \frac{520}{267} by removing the negative sign from both the numerator and the denominator.
E=\frac{2\sqrt{34710}}{267} E=-\frac{2\sqrt{34710}}{267}
Take the square root of both sides of the equation.
4+1.2-2.67E^{2}=0
Multiply both sides of the equation by 2.
5.2-2.67E^{2}=0
Add 4 and 1.2 to get 5.2.
-2.67E^{2}+5.2=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
E=\frac{0±\sqrt{0^{2}-4\left(-2.67\right)\times 5.2}}{2\left(-2.67\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2.67 for a, 0 for b, and 5.2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
E=\frac{0±\sqrt{-4\left(-2.67\right)\times 5.2}}{2\left(-2.67\right)}
Square 0.
E=\frac{0±\sqrt{10.68\times 5.2}}{2\left(-2.67\right)}
Multiply -4 times -2.67.
E=\frac{0±\sqrt{55.536}}{2\left(-2.67\right)}
Multiply 10.68 times 5.2 by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
E=\frac{0±\frac{\sqrt{34710}}{25}}{2\left(-2.67\right)}
Take the square root of 55.536.
E=\frac{0±\frac{\sqrt{34710}}{25}}{-5.34}
Multiply 2 times -2.67.
E=-\frac{2\sqrt{34710}}{267}
Now solve the equation E=\frac{0±\frac{\sqrt{34710}}{25}}{-5.34} when ± is plus.
E=\frac{2\sqrt{34710}}{267}
Now solve the equation E=\frac{0±\frac{\sqrt{34710}}{25}}{-5.34} when ± is minus.
E=-\frac{2\sqrt{34710}}{267} E=\frac{2\sqrt{34710}}{267}
The equation is now solved.