Evaluate
\frac{12\left(a_{0}+45\right)\left(2a+a_{0}+45\right)}{a^{2}}
Expand
\frac{12\left(2aa_{0}+90a+a_{0}^{2}+90a_{0}+2025\right)}{a^{2}}
Share
Copied to clipboard
12\left(\left(\frac{a}{a}+\frac{a_{0}+45}{a}\right)^{\frac{4}{2}}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
12\left(\left(\frac{a+a_{0}+45}{a}\right)^{\frac{4}{2}}-1\right)
Since \frac{a}{a} and \frac{a_{0}+45}{a} have the same denominator, add them by adding their numerators.
12\left(\left(\frac{a+a_{0}+45}{a}\right)^{2}-1\right)
Divide 4 by 2 to get 2.
12\left(\frac{\left(a+a_{0}+45\right)^{2}}{a^{2}}-1\right)
To raise \frac{a+a_{0}+45}{a} to a power, raise both numerator and denominator to the power and then divide.
12\left(\frac{\left(a+a_{0}+45\right)^{2}}{a^{2}}-\frac{a^{2}}{a^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a^{2}}{a^{2}}.
12\times \frac{\left(a+a_{0}+45\right)^{2}-a^{2}}{a^{2}}
Since \frac{\left(a+a_{0}+45\right)^{2}}{a^{2}} and \frac{a^{2}}{a^{2}} have the same denominator, subtract them by subtracting their numerators.
12\times \frac{a^{2}+aa_{0}+45a+aa_{0}+a_{0}^{2}+45a_{0}+45a+45a_{0}+2025-a^{2}}{a^{2}}
Do the multiplications in \left(a+a_{0}+45\right)^{2}-a^{2}.
12\times \frac{2aa_{0}+90a+a_{0}^{2}+90a_{0}+2025}{a^{2}}
Combine like terms in a^{2}+aa_{0}+45a+aa_{0}+a_{0}^{2}+45a_{0}+45a+45a_{0}+2025-a^{2}.
\frac{12\left(2aa_{0}+90a+a_{0}^{2}+90a_{0}+2025\right)}{a^{2}}
Express 12\times \frac{2aa_{0}+90a+a_{0}^{2}+90a_{0}+2025}{a^{2}} as a single fraction.
\frac{24aa_{0}+1080a+12a_{0}^{2}+1080a_{0}+24300}{a^{2}}
Use the distributive property to multiply 12 by 2aa_{0}+90a+a_{0}^{2}+90a_{0}+2025.
12\left(\left(\frac{a}{a}+\frac{a_{0}+45}{a}\right)^{\frac{4}{2}}-1\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a}{a}.
12\left(\left(\frac{a+a_{0}+45}{a}\right)^{\frac{4}{2}}-1\right)
Since \frac{a}{a} and \frac{a_{0}+45}{a} have the same denominator, add them by adding their numerators.
12\left(\left(\frac{a+a_{0}+45}{a}\right)^{2}-1\right)
Divide 4 by 2 to get 2.
12\left(\frac{\left(a+a_{0}+45\right)^{2}}{a^{2}}-1\right)
To raise \frac{a+a_{0}+45}{a} to a power, raise both numerator and denominator to the power and then divide.
12\left(\frac{\left(a+a_{0}+45\right)^{2}}{a^{2}}-\frac{a^{2}}{a^{2}}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 1 times \frac{a^{2}}{a^{2}}.
12\times \frac{\left(a+a_{0}+45\right)^{2}-a^{2}}{a^{2}}
Since \frac{\left(a+a_{0}+45\right)^{2}}{a^{2}} and \frac{a^{2}}{a^{2}} have the same denominator, subtract them by subtracting their numerators.
12\times \frac{a^{2}+aa_{0}+45a+aa_{0}+a_{0}^{2}+45a_{0}+45a+45a_{0}+2025-a^{2}}{a^{2}}
Do the multiplications in \left(a+a_{0}+45\right)^{2}-a^{2}.
12\times \frac{2aa_{0}+90a+a_{0}^{2}+90a_{0}+2025}{a^{2}}
Combine like terms in a^{2}+aa_{0}+45a+aa_{0}+a_{0}^{2}+45a_{0}+45a+45a_{0}+2025-a^{2}.
\frac{12\left(2aa_{0}+90a+a_{0}^{2}+90a_{0}+2025\right)}{a^{2}}
Express 12\times \frac{2aa_{0}+90a+a_{0}^{2}+90a_{0}+2025}{a^{2}} as a single fraction.
\frac{24aa_{0}+1080a+12a_{0}^{2}+1080a_{0}+24300}{a^{2}}
Use the distributive property to multiply 12 by 2aa_{0}+90a+a_{0}^{2}+90a_{0}+2025.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}