Solve for k
k = \frac{779}{188} = 4\frac{27}{188} \approx 4.143617021
Share
Copied to clipboard
2\left(2\times 3+24k\right)\times 25-\left(2\times 3+8k\right)\times 9=4920
Multiply both sides of the equation by 4, the least common multiple of 2,4.
2\left(6+24k\right)\times 25-\left(2\times 3+8k\right)\times 9=4920
Multiply 2 and 3 to get 6.
50\left(6+24k\right)-\left(2\times 3+8k\right)\times 9=4920
Multiply 2 and 25 to get 50.
300+1200k-\left(2\times 3+8k\right)\times 9=4920
Use the distributive property to multiply 50 by 6+24k.
300+1200k-\left(6+8k\right)\times 9=4920
Multiply 2 and 3 to get 6.
300+1200k-\left(54+72k\right)=4920
Use the distributive property to multiply 6+8k by 9.
300+1200k-54-72k=4920
To find the opposite of 54+72k, find the opposite of each term.
246+1200k-72k=4920
Subtract 54 from 300 to get 246.
246+1128k=4920
Combine 1200k and -72k to get 1128k.
1128k=4920-246
Subtract 246 from both sides.
1128k=4674
Subtract 246 from 4920 to get 4674.
k=\frac{4674}{1128}
Divide both sides by 1128.
k=\frac{779}{188}
Reduce the fraction \frac{4674}{1128} to lowest terms by extracting and canceling out 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}