Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

y^{2}+7y+2=0
Swap sides so that all variable terms are on the left hand side.
y=\frac{-7±\sqrt{7^{2}-4\times 2}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 7 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-7±\sqrt{49-4\times 2}}{2}
Square 7.
y=\frac{-7±\sqrt{49-8}}{2}
Multiply -4 times 2.
y=\frac{-7±\sqrt{41}}{2}
Add 49 to -8.
y=\frac{\sqrt{41}-7}{2}
Now solve the equation y=\frac{-7±\sqrt{41}}{2} when ± is plus. Add -7 to \sqrt{41}.
y=\frac{-\sqrt{41}-7}{2}
Now solve the equation y=\frac{-7±\sqrt{41}}{2} when ± is minus. Subtract \sqrt{41} from -7.
y=\frac{\sqrt{41}-7}{2} y=\frac{-\sqrt{41}-7}{2}
The equation is now solved.
y^{2}+7y+2=0
Swap sides so that all variable terms are on the left hand side.
y^{2}+7y=-2
Subtract 2 from both sides. Anything subtracted from zero gives its negation.
y^{2}+7y+\left(\frac{7}{2}\right)^{2}=-2+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}+7y+\frac{49}{4}=-2+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
y^{2}+7y+\frac{49}{4}=\frac{41}{4}
Add -2 to \frac{49}{4}.
\left(y+\frac{7}{2}\right)^{2}=\frac{41}{4}
Factor y^{2}+7y+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y+\frac{7}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
Take the square root of both sides of the equation.
y+\frac{7}{2}=\frac{\sqrt{41}}{2} y+\frac{7}{2}=-\frac{\sqrt{41}}{2}
Simplify.
y=\frac{\sqrt{41}-7}{2} y=\frac{-\sqrt{41}-7}{2}
Subtract \frac{7}{2} from both sides of the equation.