Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

-95\left(\frac{4x}{5}-\frac{3\times 5}{5}\right)^{2}+2
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{5}{5}.
-95\times \left(\frac{4x-3\times 5}{5}\right)^{2}+2
Since \frac{4x}{5} and \frac{3\times 5}{5} have the same denominator, subtract them by subtracting their numerators.
-95\times \left(\frac{4x-15}{5}\right)^{2}+2
Do the multiplications in 4x-3\times 5.
-95\times \frac{\left(4x-15\right)^{2}}{5^{2}}+2
To raise \frac{4x-15}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{-95\left(4x-15\right)^{2}}{5^{2}}+2
Express -95\times \frac{\left(4x-15\right)^{2}}{5^{2}} as a single fraction.
\frac{-95\left(4x-15\right)^{2}}{5^{2}}+\frac{2\times 5^{2}}{5^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5^{2}}{5^{2}}.
\frac{-95\left(4x-15\right)^{2}+2\times 5^{2}}{5^{2}}
Since \frac{-95\left(4x-15\right)^{2}}{5^{2}} and \frac{2\times 5^{2}}{5^{2}} have the same denominator, add them by adding their numerators.
\frac{-1520x^{2}+11400x-21375+50}{5^{2}}
Do the multiplications in -95\left(4x-15\right)^{2}+2\times 5^{2}.
\frac{-1520x^{2}+11400x-21325}{5^{2}}
Combine like terms in -1520x^{2}+11400x-21375+50.
\frac{-5\times 304\left(x-\left(-\frac{1}{76}\sqrt{190}+\frac{15}{4}\right)\right)\left(x-\left(\frac{1}{76}\sqrt{190}+\frac{15}{4}\right)\right)}{5^{2}}
Factor the expressions that are not already factored in \frac{-1520x^{2}+11400x-21325}{5^{2}}.
\frac{-304\left(x-\left(-\frac{1}{76}\sqrt{190}+\frac{15}{4}\right)\right)\left(x-\left(\frac{1}{76}\sqrt{190}+\frac{15}{4}\right)\right)}{5}
Cancel out 5 in both numerator and denominator.
\frac{-304\left(x+\frac{1}{76}\sqrt{190}-\frac{15}{4}\right)\left(x-\left(\frac{1}{76}\sqrt{190}+\frac{15}{4}\right)\right)}{5}
To find the opposite of -\frac{1}{76}\sqrt{190}+\frac{15}{4}, find the opposite of each term.
\frac{-304\left(x+\frac{1}{76}\sqrt{190}-\frac{15}{4}\right)\left(x-\frac{1}{76}\sqrt{190}-\frac{15}{4}\right)}{5}
To find the opposite of \frac{1}{76}\sqrt{190}+\frac{15}{4}, find the opposite of each term.
\frac{\left(-304x-4\sqrt{190}+1140\right)\left(x-\frac{1}{76}\sqrt{190}-\frac{15}{4}\right)}{5}
Use the distributive property to multiply -304 by x+\frac{1}{76}\sqrt{190}-\frac{15}{4}.
\frac{-304x^{2}+2280x+\frac{1}{19}\left(\sqrt{190}\right)^{2}-4275}{5}
Use the distributive property to multiply -304x-4\sqrt{190}+1140 by x-\frac{1}{76}\sqrt{190}-\frac{15}{4} and combine like terms.
\frac{-304x^{2}+2280x+\frac{1}{19}\times 190-4275}{5}
The square of \sqrt{190} is 190.
\frac{-304x^{2}+2280x+10-4275}{5}
Multiply \frac{1}{19} and 190 to get 10.
\frac{-304x^{2}+2280x-4265}{5}
Subtract 4275 from 10 to get -4265.
-95\left(\frac{4x}{5}-\frac{3\times 5}{5}\right)^{2}+2
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{5}{5}.
-95\times \left(\frac{4x-3\times 5}{5}\right)^{2}+2
Since \frac{4x}{5} and \frac{3\times 5}{5} have the same denominator, subtract them by subtracting their numerators.
-95\times \left(\frac{4x-15}{5}\right)^{2}+2
Do the multiplications in 4x-3\times 5.
-95\times \frac{\left(4x-15\right)^{2}}{5^{2}}+2
To raise \frac{4x-15}{5} to a power, raise both numerator and denominator to the power and then divide.
\frac{-95\left(4x-15\right)^{2}}{5^{2}}+2
Express -95\times \frac{\left(4x-15\right)^{2}}{5^{2}} as a single fraction.
\frac{-95\left(4x-15\right)^{2}}{5^{2}}+\frac{2\times 5^{2}}{5^{2}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{5^{2}}{5^{2}}.
\frac{-95\left(4x-15\right)^{2}+2\times 5^{2}}{5^{2}}
Since \frac{-95\left(4x-15\right)^{2}}{5^{2}} and \frac{2\times 5^{2}}{5^{2}} have the same denominator, add them by adding their numerators.
\frac{-1520x^{2}+11400x-21375+50}{5^{2}}
Do the multiplications in -95\left(4x-15\right)^{2}+2\times 5^{2}.
\frac{-1520x^{2}+11400x-21325}{5^{2}}
Combine like terms in -1520x^{2}+11400x-21375+50.
\frac{-5\times 304\left(x-\left(-\frac{1}{76}\sqrt{190}+\frac{15}{4}\right)\right)\left(x-\left(\frac{1}{76}\sqrt{190}+\frac{15}{4}\right)\right)}{5^{2}}
Factor the expressions that are not already factored in \frac{-1520x^{2}+11400x-21325}{5^{2}}.
\frac{-304\left(x-\left(-\frac{1}{76}\sqrt{190}+\frac{15}{4}\right)\right)\left(x-\left(\frac{1}{76}\sqrt{190}+\frac{15}{4}\right)\right)}{5}
Cancel out 5 in both numerator and denominator.
\frac{-304\left(x+\frac{1}{76}\sqrt{190}-\frac{15}{4}\right)\left(x-\left(\frac{1}{76}\sqrt{190}+\frac{15}{4}\right)\right)}{5}
To find the opposite of -\frac{1}{76}\sqrt{190}+\frac{15}{4}, find the opposite of each term.
\frac{-304\left(x+\frac{1}{76}\sqrt{190}-\frac{15}{4}\right)\left(x-\frac{1}{76}\sqrt{190}-\frac{15}{4}\right)}{5}
To find the opposite of \frac{1}{76}\sqrt{190}+\frac{15}{4}, find the opposite of each term.
\frac{\left(-304x-4\sqrt{190}+1140\right)\left(x-\frac{1}{76}\sqrt{190}-\frac{15}{4}\right)}{5}
Use the distributive property to multiply -304 by x+\frac{1}{76}\sqrt{190}-\frac{15}{4}.
\frac{-304x^{2}+2280x+\frac{1}{19}\left(\sqrt{190}\right)^{2}-4275}{5}
Use the distributive property to multiply -304x-4\sqrt{190}+1140 by x-\frac{1}{76}\sqrt{190}-\frac{15}{4} and combine like terms.
\frac{-304x^{2}+2280x+\frac{1}{19}\times 190-4275}{5}
The square of \sqrt{190} is 190.
\frac{-304x^{2}+2280x+10-4275}{5}
Multiply \frac{1}{19} and 190 to get 10.
\frac{-304x^{2}+2280x-4265}{5}
Subtract 4275 from 10 to get -4265.