Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

-7x^{2}+15x-5=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-15±\sqrt{15^{2}-4\left(-7\right)\left(-5\right)}}{2\left(-7\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{225-4\left(-7\right)\left(-5\right)}}{2\left(-7\right)}
Square 15.
x=\frac{-15±\sqrt{225+28\left(-5\right)}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-15±\sqrt{225-140}}{2\left(-7\right)}
Multiply 28 times -5.
x=\frac{-15±\sqrt{85}}{2\left(-7\right)}
Add 225 to -140.
x=\frac{-15±\sqrt{85}}{-14}
Multiply 2 times -7.
x=\frac{\sqrt{85}-15}{-14}
Now solve the equation x=\frac{-15±\sqrt{85}}{-14} when ± is plus. Add -15 to \sqrt{85}.
x=\frac{15-\sqrt{85}}{14}
Divide -15+\sqrt{85} by -14.
x=\frac{-\sqrt{85}-15}{-14}
Now solve the equation x=\frac{-15±\sqrt{85}}{-14} when ± is minus. Subtract \sqrt{85} from -15.
x=\frac{\sqrt{85}+15}{14}
Divide -15-\sqrt{85} by -14.
-7x^{2}+15x-5=-7\left(x-\frac{15-\sqrt{85}}{14}\right)\left(x-\frac{\sqrt{85}+15}{14}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{15-\sqrt{85}}{14} for x_{1} and \frac{15+\sqrt{85}}{14} for x_{2}.
x ^ 2 -\frac{15}{7}x +\frac{5}{7} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.
r + s = \frac{15}{7} rs = \frac{5}{7}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{15}{14} - u s = \frac{15}{14} + u
Two numbers r and s sum up to \frac{15}{7} exactly when the average of the two numbers is \frac{1}{2}*\frac{15}{7} = \frac{15}{14}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{15}{14} - u) (\frac{15}{14} + u) = \frac{5}{7}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{5}{7}
\frac{225}{196} - u^2 = \frac{5}{7}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{5}{7}-\frac{225}{196} = -\frac{85}{196}
Simplify the expression by subtracting \frac{225}{196} on both sides
u^2 = \frac{85}{196} u = \pm\sqrt{\frac{85}{196}} = \pm \frac{\sqrt{85}}{14}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{15}{14} - \frac{\sqrt{85}}{14} = 0.413 s = \frac{15}{14} + \frac{\sqrt{85}}{14} = 1.730
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.