Solve for x
x = \frac{9 \sqrt{17} - 9}{8} \approx 3.513493829
x=\frac{-9\sqrt{17}-9}{8}\approx -5.763493829
Graph
Share
Copied to clipboard
4^{2}x^{2}+x^{2}=\left(18-x\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}+x^{2}=\left(18-x\right)^{2}
Calculate 4 to the power of 2 and get 16.
17x^{2}=\left(18-x\right)^{2}
Combine 16x^{2} and x^{2} to get 17x^{2}.
17x^{2}=324-36x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(18-x\right)^{2}.
17x^{2}-324=-36x+x^{2}
Subtract 324 from both sides.
17x^{2}-324+36x=x^{2}
Add 36x to both sides.
17x^{2}-324+36x-x^{2}=0
Subtract x^{2} from both sides.
16x^{2}-324+36x=0
Combine 17x^{2} and -x^{2} to get 16x^{2}.
16x^{2}+36x-324=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-36±\sqrt{36^{2}-4\times 16\left(-324\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 36 for b, and -324 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-36±\sqrt{1296-4\times 16\left(-324\right)}}{2\times 16}
Square 36.
x=\frac{-36±\sqrt{1296-64\left(-324\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-36±\sqrt{1296+20736}}{2\times 16}
Multiply -64 times -324.
x=\frac{-36±\sqrt{22032}}{2\times 16}
Add 1296 to 20736.
x=\frac{-36±36\sqrt{17}}{2\times 16}
Take the square root of 22032.
x=\frac{-36±36\sqrt{17}}{32}
Multiply 2 times 16.
x=\frac{36\sqrt{17}-36}{32}
Now solve the equation x=\frac{-36±36\sqrt{17}}{32} when ± is plus. Add -36 to 36\sqrt{17}.
x=\frac{9\sqrt{17}-9}{8}
Divide -36+36\sqrt{17} by 32.
x=\frac{-36\sqrt{17}-36}{32}
Now solve the equation x=\frac{-36±36\sqrt{17}}{32} when ± is minus. Subtract 36\sqrt{17} from -36.
x=\frac{-9\sqrt{17}-9}{8}
Divide -36-36\sqrt{17} by 32.
x=\frac{9\sqrt{17}-9}{8} x=\frac{-9\sqrt{17}-9}{8}
The equation is now solved.
4^{2}x^{2}+x^{2}=\left(18-x\right)^{2}
Expand \left(4x\right)^{2}.
16x^{2}+x^{2}=\left(18-x\right)^{2}
Calculate 4 to the power of 2 and get 16.
17x^{2}=\left(18-x\right)^{2}
Combine 16x^{2} and x^{2} to get 17x^{2}.
17x^{2}=324-36x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(18-x\right)^{2}.
17x^{2}+36x=324+x^{2}
Add 36x to both sides.
17x^{2}+36x-x^{2}=324
Subtract x^{2} from both sides.
16x^{2}+36x=324
Combine 17x^{2} and -x^{2} to get 16x^{2}.
\frac{16x^{2}+36x}{16}=\frac{324}{16}
Divide both sides by 16.
x^{2}+\frac{36}{16}x=\frac{324}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}+\frac{9}{4}x=\frac{324}{16}
Reduce the fraction \frac{36}{16} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{9}{4}x=\frac{81}{4}
Reduce the fraction \frac{324}{16} to lowest terms by extracting and canceling out 4.
x^{2}+\frac{9}{4}x+\left(\frac{9}{8}\right)^{2}=\frac{81}{4}+\left(\frac{9}{8}\right)^{2}
Divide \frac{9}{4}, the coefficient of the x term, by 2 to get \frac{9}{8}. Then add the square of \frac{9}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{9}{4}x+\frac{81}{64}=\frac{81}{4}+\frac{81}{64}
Square \frac{9}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{9}{4}x+\frac{81}{64}=\frac{1377}{64}
Add \frac{81}{4} to \frac{81}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{9}{8}\right)^{2}=\frac{1377}{64}
Factor x^{2}+\frac{9}{4}x+\frac{81}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{9}{8}\right)^{2}}=\sqrt{\frac{1377}{64}}
Take the square root of both sides of the equation.
x+\frac{9}{8}=\frac{9\sqrt{17}}{8} x+\frac{9}{8}=-\frac{9\sqrt{17}}{8}
Simplify.
x=\frac{9\sqrt{17}-9}{8} x=\frac{-9\sqrt{17}-9}{8}
Subtract \frac{9}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}