Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\left(3\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}-\sqrt{72}-\left(3-\sqrt{2}\right)^{2}
Consider \left(3\sqrt{2}-2\sqrt{3}\right)\left(3\sqrt{2}+2\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3^{2}\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}-\sqrt{72}-\left(3-\sqrt{2}\right)^{2}
Expand \left(3\sqrt{2}\right)^{2}.
9\left(\sqrt{2}\right)^{2}-\left(2\sqrt{3}\right)^{2}-\sqrt{72}-\left(3-\sqrt{2}\right)^{2}
Calculate 3 to the power of 2 and get 9.
9\times 2-\left(2\sqrt{3}\right)^{2}-\sqrt{72}-\left(3-\sqrt{2}\right)^{2}
The square of \sqrt{2} is 2.
18-\left(2\sqrt{3}\right)^{2}-\sqrt{72}-\left(3-\sqrt{2}\right)^{2}
Multiply 9 and 2 to get 18.
18-2^{2}\left(\sqrt{3}\right)^{2}-\sqrt{72}-\left(3-\sqrt{2}\right)^{2}
Expand \left(2\sqrt{3}\right)^{2}.
18-4\left(\sqrt{3}\right)^{2}-\sqrt{72}-\left(3-\sqrt{2}\right)^{2}
Calculate 2 to the power of 2 and get 4.
18-4\times 3-\sqrt{72}-\left(3-\sqrt{2}\right)^{2}
The square of \sqrt{3} is 3.
18-12-\sqrt{72}-\left(3-\sqrt{2}\right)^{2}
Multiply 4 and 3 to get 12.
6-\sqrt{72}-\left(3-\sqrt{2}\right)^{2}
Subtract 12 from 18 to get 6.
6-6\sqrt{2}-\left(3-\sqrt{2}\right)^{2}
Factor 72=6^{2}\times 2. Rewrite the square root of the product \sqrt{6^{2}\times 2} as the product of square roots \sqrt{6^{2}}\sqrt{2}. Take the square root of 6^{2}.
6-6\sqrt{2}-\left(9-6\sqrt{2}+\left(\sqrt{2}\right)^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(3-\sqrt{2}\right)^{2}.
6-6\sqrt{2}-\left(9-6\sqrt{2}+2\right)
The square of \sqrt{2} is 2.
6-6\sqrt{2}-\left(11-6\sqrt{2}\right)
Add 9 and 2 to get 11.
6-6\sqrt{2}-11+6\sqrt{2}
To find the opposite of 11-6\sqrt{2}, find the opposite of each term.
-5-6\sqrt{2}+6\sqrt{2}
Subtract 11 from 6 to get -5.
-5
Combine -6\sqrt{2} and 6\sqrt{2} to get 0.