Evaluate
3t^{3}+t^{2}-\frac{3}{7}-\frac{1}{7t}
Expand
3t^{3}+t^{2}-\frac{3}{7}-\frac{1}{7t}
Share
Copied to clipboard
\left(\frac{3t}{t}+\frac{1}{t}\right)\left(t^{3}-\frac{1}{7}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{t}{t}.
\frac{3t+1}{t}\left(t^{3}-\frac{1}{7}\right)
Since \frac{3t}{t} and \frac{1}{t} have the same denominator, add them by adding their numerators.
\frac{3t+1}{t}t^{3}-\frac{1}{7}\times \frac{3t+1}{t}
Use the distributive property to multiply \frac{3t+1}{t} by t^{3}-\frac{1}{7}.
\frac{\left(3t+1\right)t^{3}}{t}-\frac{1}{7}\times \frac{3t+1}{t}
Express \frac{3t+1}{t}t^{3} as a single fraction.
\left(3t+1\right)t^{2}-\frac{1}{7}\times \frac{3t+1}{t}
Cancel out t in both numerator and denominator.
3t^{3}+t^{2}-\frac{1}{7}\times \frac{3t+1}{t}
Use the distributive property to multiply 3t+1 by t^{2}.
3t^{3}+t^{2}+\frac{-\left(3t+1\right)}{7t}
Multiply -\frac{1}{7} times \frac{3t+1}{t} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3t^{3}+t^{2}\right)\times 7t}{7t}+\frac{-\left(3t+1\right)}{7t}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3t^{3}+t^{2} times \frac{7t}{7t}.
\frac{\left(3t^{3}+t^{2}\right)\times 7t-\left(3t+1\right)}{7t}
Since \frac{\left(3t^{3}+t^{2}\right)\times 7t}{7t} and \frac{-\left(3t+1\right)}{7t} have the same denominator, add them by adding their numerators.
\frac{21t^{4}+7t^{3}-3t-1}{7t}
Do the multiplications in \left(3t^{3}+t^{2}\right)\times 7t-\left(3t+1\right).
\left(\frac{3t}{t}+\frac{1}{t}\right)\left(t^{3}-\frac{1}{7}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{t}{t}.
\frac{3t+1}{t}\left(t^{3}-\frac{1}{7}\right)
Since \frac{3t}{t} and \frac{1}{t} have the same denominator, add them by adding their numerators.
\frac{3t+1}{t}t^{3}-\frac{1}{7}\times \frac{3t+1}{t}
Use the distributive property to multiply \frac{3t+1}{t} by t^{3}-\frac{1}{7}.
\frac{\left(3t+1\right)t^{3}}{t}-\frac{1}{7}\times \frac{3t+1}{t}
Express \frac{3t+1}{t}t^{3} as a single fraction.
\left(3t+1\right)t^{2}-\frac{1}{7}\times \frac{3t+1}{t}
Cancel out t in both numerator and denominator.
3t^{3}+t^{2}-\frac{1}{7}\times \frac{3t+1}{t}
Use the distributive property to multiply 3t+1 by t^{2}.
3t^{3}+t^{2}+\frac{-\left(3t+1\right)}{7t}
Multiply -\frac{1}{7} times \frac{3t+1}{t} by multiplying numerator times numerator and denominator times denominator.
\frac{\left(3t^{3}+t^{2}\right)\times 7t}{7t}+\frac{-\left(3t+1\right)}{7t}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3t^{3}+t^{2} times \frac{7t}{7t}.
\frac{\left(3t^{3}+t^{2}\right)\times 7t-\left(3t+1\right)}{7t}
Since \frac{\left(3t^{3}+t^{2}\right)\times 7t}{7t} and \frac{-\left(3t+1\right)}{7t} have the same denominator, add them by adding their numerators.
\frac{21t^{4}+7t^{3}-3t-1}{7t}
Do the multiplications in \left(3t^{3}+t^{2}\right)\times 7t-\left(3t+1\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}