Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2}{7}+\frac{13}{35}x-\frac{6}{5}x^{2}+\left(x-\frac{2}{11}x\right)\left(x^{2}-5x-\frac{1}{5}\right)-\left(\frac{3x-7}{3}\right)^{2}
Use the distributive property to multiply 2-3x by \frac{1}{7}+\frac{2}{5}x and combine like terms.
\frac{2}{7}+\frac{13}{35}x-\frac{6}{5}x^{2}+\frac{9}{11}x\left(x^{2}-5x-\frac{1}{5}\right)-\left(\frac{3x-7}{3}\right)^{2}
Combine x and -\frac{2}{11}x to get \frac{9}{11}x.
\frac{2}{7}+\frac{13}{35}x-\frac{6}{5}x^{2}+\frac{9}{11}x^{3}-\frac{45}{11}x^{2}-\frac{9}{55}x-\left(\frac{3x-7}{3}\right)^{2}
Use the distributive property to multiply \frac{9}{11}x by x^{2}-5x-\frac{1}{5}.
\frac{2}{7}+\frac{13}{35}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}-\frac{9}{55}x-\left(\frac{3x-7}{3}\right)^{2}
Combine -\frac{6}{5}x^{2} and -\frac{45}{11}x^{2} to get -\frac{291}{55}x^{2}.
\frac{2}{7}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}-\left(\frac{3x-7}{3}\right)^{2}
Combine \frac{13}{35}x and -\frac{9}{55}x to get \frac{16}{77}x.
\frac{2}{7}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}-\frac{\left(3x-7\right)^{2}}{3^{2}}
To raise \frac{3x-7}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{2}{7}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}-\frac{\left(3x-7\right)^{2}}{9}
Calculate 3 to the power of 2 and get 9.
\frac{2\times 9}{63}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}-\frac{7\left(3x-7\right)^{2}}{63}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 9 is 63. Multiply \frac{2}{7} times \frac{9}{9}. Multiply \frac{\left(3x-7\right)^{2}}{9} times \frac{7}{7}.
\frac{2\times 9-7\left(3x-7\right)^{2}}{63}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}
Since \frac{2\times 9}{63} and \frac{7\left(3x-7\right)^{2}}{63} have the same denominator, subtract them by subtracting their numerators.
\frac{18-63x^{2}+294x-343}{63}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}
Do the multiplications in 2\times 9-7\left(3x-7\right)^{2}.
\frac{-325-63x^{2}+294x}{63}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}
Combine like terms in 18-63x^{2}+294x-343.
-\frac{325}{63}+\frac{14}{3}x-x^{2}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}
Divide each term of -325-63x^{2}+294x by 63 to get -\frac{325}{63}+\frac{14}{3}x-x^{2}.
-\frac{325}{63}+\frac{1126}{231}x-x^{2}-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}
Combine \frac{14}{3}x and \frac{16}{77}x to get \frac{1126}{231}x.
-\frac{325}{63}+\frac{1126}{231}x-\frac{346}{55}x^{2}+\frac{9}{11}x^{3}
Combine -x^{2} and -\frac{291}{55}x^{2} to get -\frac{346}{55}x^{2}.
\frac{2}{7}+\frac{13}{35}x-\frac{6}{5}x^{2}+\left(x-\frac{2}{11}x\right)\left(x^{2}-5x-\frac{1}{5}\right)-\left(\frac{3x-7}{3}\right)^{2}
Use the distributive property to multiply 2-3x by \frac{1}{7}+\frac{2}{5}x and combine like terms.
\frac{2}{7}+\frac{13}{35}x-\frac{6}{5}x^{2}+\frac{9}{11}x\left(x^{2}-5x-\frac{1}{5}\right)-\left(\frac{3x-7}{3}\right)^{2}
Combine x and -\frac{2}{11}x to get \frac{9}{11}x.
\frac{2}{7}+\frac{13}{35}x-\frac{6}{5}x^{2}+\frac{9}{11}x^{3}-\frac{45}{11}x^{2}-\frac{9}{55}x-\left(\frac{3x-7}{3}\right)^{2}
Use the distributive property to multiply \frac{9}{11}x by x^{2}-5x-\frac{1}{5}.
\frac{2}{7}+\frac{13}{35}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}-\frac{9}{55}x-\left(\frac{3x-7}{3}\right)^{2}
Combine -\frac{6}{5}x^{2} and -\frac{45}{11}x^{2} to get -\frac{291}{55}x^{2}.
\frac{2}{7}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}-\left(\frac{3x-7}{3}\right)^{2}
Combine \frac{13}{35}x and -\frac{9}{55}x to get \frac{16}{77}x.
\frac{2}{7}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}-\frac{\left(3x-7\right)^{2}}{3^{2}}
To raise \frac{3x-7}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{2}{7}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}-\frac{\left(3x-7\right)^{2}}{9}
Calculate 3 to the power of 2 and get 9.
\frac{2\times 9}{63}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}-\frac{7\left(3x-7\right)^{2}}{63}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 7 and 9 is 63. Multiply \frac{2}{7} times \frac{9}{9}. Multiply \frac{\left(3x-7\right)^{2}}{9} times \frac{7}{7}.
\frac{2\times 9-7\left(3x-7\right)^{2}}{63}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}
Since \frac{2\times 9}{63} and \frac{7\left(3x-7\right)^{2}}{63} have the same denominator, subtract them by subtracting their numerators.
\frac{18-63x^{2}+294x-343}{63}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}
Do the multiplications in 2\times 9-7\left(3x-7\right)^{2}.
\frac{-325-63x^{2}+294x}{63}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}
Combine like terms in 18-63x^{2}+294x-343.
-\frac{325}{63}+\frac{14}{3}x-x^{2}+\frac{16}{77}x-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}
Divide each term of -325-63x^{2}+294x by 63 to get -\frac{325}{63}+\frac{14}{3}x-x^{2}.
-\frac{325}{63}+\frac{1126}{231}x-x^{2}-\frac{291}{55}x^{2}+\frac{9}{11}x^{3}
Combine \frac{14}{3}x and \frac{16}{77}x to get \frac{1126}{231}x.
-\frac{325}{63}+\frac{1126}{231}x-\frac{346}{55}x^{2}+\frac{9}{11}x^{3}
Combine -x^{2} and -\frac{291}{55}x^{2} to get -\frac{346}{55}x^{2}.