Evaluate
1
Factor
1
Graph
Share
Copied to clipboard
\frac{\frac{x\left(-x+2\right)}{\left(x+2\right)\left(-x+2\right)}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(-x+2\right)}-\frac{6x}{x^{2}-4}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and 2-x is \left(x+2\right)\left(-x+2\right). Multiply \frac{x}{x+2} times \frac{-x+2}{-x+2}. Multiply \frac{3}{2-x} times \frac{x+2}{x+2}.
\frac{\frac{x\left(-x+2\right)-3\left(x+2\right)}{\left(x+2\right)\left(-x+2\right)}-\frac{6x}{x^{2}-4}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Since \frac{x\left(-x+2\right)}{\left(x+2\right)\left(-x+2\right)} and \frac{3\left(x+2\right)}{\left(x+2\right)\left(-x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-x^{2}+2x-3x-6}{\left(x+2\right)\left(-x+2\right)}-\frac{6x}{x^{2}-4}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Do the multiplications in x\left(-x+2\right)-3\left(x+2\right).
\frac{\frac{-x^{2}-x-6}{\left(x+2\right)\left(-x+2\right)}-\frac{6x}{x^{2}-4}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Combine like terms in -x^{2}+2x-3x-6.
\frac{\frac{-x^{2}-x-6}{\left(x+2\right)\left(-x+2\right)}-\frac{6x}{\left(x-2\right)\left(x+2\right)}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Factor x^{2}-4.
\frac{\frac{-\left(-x^{2}-x-6\right)}{\left(x-2\right)\left(x+2\right)}-\frac{6x}{\left(x-2\right)\left(x+2\right)}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)\left(-x+2\right) and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right). Multiply \frac{-x^{2}-x-6}{\left(x+2\right)\left(-x+2\right)} times \frac{-1}{-1}.
\frac{\frac{-\left(-x^{2}-x-6\right)-6x}{\left(x-2\right)\left(x+2\right)}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Since \frac{-\left(-x^{2}-x-6\right)}{\left(x-2\right)\left(x+2\right)} and \frac{6x}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+x+6-6x}{\left(x-2\right)\left(x+2\right)}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Do the multiplications in -\left(-x^{2}-x-6\right)-6x.
\frac{\frac{x^{2}-5x+6}{\left(x-2\right)\left(x+2\right)}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Combine like terms in x^{2}+x+6-6x.
\frac{\frac{\left(x-3\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Factor the expressions that are not already factored in \frac{x^{2}-5x+6}{\left(x-2\right)\left(x+2\right)}.
\frac{\frac{x-3}{x+2}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Cancel out x-2 in both numerator and denominator.
\frac{\frac{x-3}{x+2}}{\frac{\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}}
Factor the expressions that are not already factored in \frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}.
\frac{\frac{x-3}{x+2}}{\frac{x-3}{x+2}}
Cancel out x-1 in both numerator and denominator.
\frac{\left(x-3\right)\left(x+2\right)}{\left(x+2\right)\left(x-3\right)}
Divide \frac{x-3}{x+2} by \frac{x-3}{x+2} by multiplying \frac{x-3}{x+2} by the reciprocal of \frac{x-3}{x+2}.
1
Cancel out \left(x-3\right)\left(x+2\right) in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}