Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{x\left(-x+2\right)}{\left(x+2\right)\left(-x+2\right)}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(-x+2\right)}-\frac{6x}{x^{2}-4}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+2 and 2-x is \left(x+2\right)\left(-x+2\right). Multiply \frac{x}{x+2} times \frac{-x+2}{-x+2}. Multiply \frac{3}{2-x} times \frac{x+2}{x+2}.
\frac{\frac{x\left(-x+2\right)-3\left(x+2\right)}{\left(x+2\right)\left(-x+2\right)}-\frac{6x}{x^{2}-4}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Since \frac{x\left(-x+2\right)}{\left(x+2\right)\left(-x+2\right)} and \frac{3\left(x+2\right)}{\left(x+2\right)\left(-x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{-x^{2}+2x-3x-6}{\left(x+2\right)\left(-x+2\right)}-\frac{6x}{x^{2}-4}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Do the multiplications in x\left(-x+2\right)-3\left(x+2\right).
\frac{\frac{-x^{2}-x-6}{\left(x+2\right)\left(-x+2\right)}-\frac{6x}{x^{2}-4}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Combine like terms in -x^{2}+2x-3x-6.
\frac{\frac{-x^{2}-x-6}{\left(x+2\right)\left(-x+2\right)}-\frac{6x}{\left(x-2\right)\left(x+2\right)}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Factor x^{2}-4.
\frac{\frac{-\left(-x^{2}-x-6\right)}{\left(x-2\right)\left(x+2\right)}-\frac{6x}{\left(x-2\right)\left(x+2\right)}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+2\right)\left(-x+2\right) and \left(x-2\right)\left(x+2\right) is \left(x-2\right)\left(x+2\right). Multiply \frac{-x^{2}-x-6}{\left(x+2\right)\left(-x+2\right)} times \frac{-1}{-1}.
\frac{\frac{-\left(-x^{2}-x-6\right)-6x}{\left(x-2\right)\left(x+2\right)}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Since \frac{-\left(-x^{2}-x-6\right)}{\left(x-2\right)\left(x+2\right)} and \frac{6x}{\left(x-2\right)\left(x+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\frac{x^{2}+x+6-6x}{\left(x-2\right)\left(x+2\right)}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Do the multiplications in -\left(-x^{2}-x-6\right)-6x.
\frac{\frac{x^{2}-5x+6}{\left(x-2\right)\left(x+2\right)}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Combine like terms in x^{2}+x+6-6x.
\frac{\frac{\left(x-3\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Factor the expressions that are not already factored in \frac{x^{2}-5x+6}{\left(x-2\right)\left(x+2\right)}.
\frac{\frac{x-3}{x+2}}{\frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}}
Cancel out x-2 in both numerator and denominator.
\frac{\frac{x-3}{x+2}}{\frac{\left(x-3\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}}
Factor the expressions that are not already factored in \frac{\left(x-2\right)^{2}-1}{x^{2}+x-2}.
\frac{\frac{x-3}{x+2}}{\frac{x-3}{x+2}}
Cancel out x-1 in both numerator and denominator.
\frac{\left(x-3\right)\left(x+2\right)}{\left(x+2\right)\left(x-3\right)}
Divide \frac{x-3}{x+2} by \frac{x-3}{x+2} by multiplying \frac{x-3}{x+2} by the reciprocal of \frac{x-3}{x+2}.
1
Cancel out \left(x-3\right)\left(x+2\right) in both numerator and denominator.