Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{\frac{\left(x+2\right)\left(-x+2\right)}{\left(x+1\right)\left(-x+2\right)}+\frac{2x\left(x+1\right)}{\left(x+1\right)\left(-x+2\right)}+\frac{x^{2}+4x+6}{x^{2}-x-2}}{\frac{x^{2}+1}{2x^{2}-4x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and 2-x is \left(x+1\right)\left(-x+2\right). Multiply \frac{x+2}{x+1} times \frac{-x+2}{-x+2}. Multiply \frac{2x}{2-x} times \frac{x+1}{x+1}.
\frac{\frac{\left(x+2\right)\left(-x+2\right)+2x\left(x+1\right)}{\left(x+1\right)\left(-x+2\right)}+\frac{x^{2}+4x+6}{x^{2}-x-2}}{\frac{x^{2}+1}{2x^{2}-4x}}
Since \frac{\left(x+2\right)\left(-x+2\right)}{\left(x+1\right)\left(-x+2\right)} and \frac{2x\left(x+1\right)}{\left(x+1\right)\left(-x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-x^{2}+2x-2x+4+2x^{2}+2x}{\left(x+1\right)\left(-x+2\right)}+\frac{x^{2}+4x+6}{x^{2}-x-2}}{\frac{x^{2}+1}{2x^{2}-4x}}
Do the multiplications in \left(x+2\right)\left(-x+2\right)+2x\left(x+1\right).
\frac{\frac{x^{2}+2x+4}{\left(x+1\right)\left(-x+2\right)}+\frac{x^{2}+4x+6}{x^{2}-x-2}}{\frac{x^{2}+1}{2x^{2}-4x}}
Combine like terms in -x^{2}+2x-2x+4+2x^{2}+2x.
\frac{\frac{x^{2}+2x+4}{\left(x+1\right)\left(-x+2\right)}+\frac{x^{2}+4x+6}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+1}{2x^{2}-4x}}
Factor x^{2}-x-2.
\frac{\frac{-\left(x^{2}+2x+4\right)}{\left(x-2\right)\left(x+1\right)}+\frac{x^{2}+4x+6}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+1}{2x^{2}-4x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(-x+2\right) and \left(x-2\right)\left(x+1\right) is \left(x-2\right)\left(x+1\right). Multiply \frac{x^{2}+2x+4}{\left(x+1\right)\left(-x+2\right)} times \frac{-1}{-1}.
\frac{\frac{-\left(x^{2}+2x+4\right)+x^{2}+4x+6}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+1}{2x^{2}-4x}}
Since \frac{-\left(x^{2}+2x+4\right)}{\left(x-2\right)\left(x+1\right)} and \frac{x^{2}+4x+6}{\left(x-2\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-x^{2}-2x-4+x^{2}+4x+6}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+1}{2x^{2}-4x}}
Do the multiplications in -\left(x^{2}+2x+4\right)+x^{2}+4x+6.
\frac{\frac{2x+2}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+1}{2x^{2}-4x}}
Combine like terms in -x^{2}-2x-4+x^{2}+4x+6.
\frac{\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+1}{2x^{2}-4x}}
Factor the expressions that are not already factored in \frac{2x+2}{\left(x-2\right)\left(x+1\right)}.
\frac{\frac{2}{x-2}}{\frac{x^{2}+1}{2x^{2}-4x}}
Cancel out x+1 in both numerator and denominator.
\frac{2\left(2x^{2}-4x\right)}{\left(x-2\right)\left(x^{2}+1\right)}
Divide \frac{2}{x-2} by \frac{x^{2}+1}{2x^{2}-4x} by multiplying \frac{2}{x-2} by the reciprocal of \frac{x^{2}+1}{2x^{2}-4x}.
\frac{2^{2}x\left(x-2\right)}{\left(x-2\right)\left(x^{2}+1\right)}
Factor the expressions that are not already factored.
\frac{2^{2}x}{x^{2}+1}
Cancel out x-2 in both numerator and denominator.
\frac{4x}{x^{2}+1}
Expand the expression.
\frac{\frac{\left(x+2\right)\left(-x+2\right)}{\left(x+1\right)\left(-x+2\right)}+\frac{2x\left(x+1\right)}{\left(x+1\right)\left(-x+2\right)}+\frac{x^{2}+4x+6}{x^{2}-x-2}}{\frac{x^{2}+1}{2x^{2}-4x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of x+1 and 2-x is \left(x+1\right)\left(-x+2\right). Multiply \frac{x+2}{x+1} times \frac{-x+2}{-x+2}. Multiply \frac{2x}{2-x} times \frac{x+1}{x+1}.
\frac{\frac{\left(x+2\right)\left(-x+2\right)+2x\left(x+1\right)}{\left(x+1\right)\left(-x+2\right)}+\frac{x^{2}+4x+6}{x^{2}-x-2}}{\frac{x^{2}+1}{2x^{2}-4x}}
Since \frac{\left(x+2\right)\left(-x+2\right)}{\left(x+1\right)\left(-x+2\right)} and \frac{2x\left(x+1\right)}{\left(x+1\right)\left(-x+2\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-x^{2}+2x-2x+4+2x^{2}+2x}{\left(x+1\right)\left(-x+2\right)}+\frac{x^{2}+4x+6}{x^{2}-x-2}}{\frac{x^{2}+1}{2x^{2}-4x}}
Do the multiplications in \left(x+2\right)\left(-x+2\right)+2x\left(x+1\right).
\frac{\frac{x^{2}+2x+4}{\left(x+1\right)\left(-x+2\right)}+\frac{x^{2}+4x+6}{x^{2}-x-2}}{\frac{x^{2}+1}{2x^{2}-4x}}
Combine like terms in -x^{2}+2x-2x+4+2x^{2}+2x.
\frac{\frac{x^{2}+2x+4}{\left(x+1\right)\left(-x+2\right)}+\frac{x^{2}+4x+6}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+1}{2x^{2}-4x}}
Factor x^{2}-x-2.
\frac{\frac{-\left(x^{2}+2x+4\right)}{\left(x-2\right)\left(x+1\right)}+\frac{x^{2}+4x+6}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+1}{2x^{2}-4x}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(x+1\right)\left(-x+2\right) and \left(x-2\right)\left(x+1\right) is \left(x-2\right)\left(x+1\right). Multiply \frac{x^{2}+2x+4}{\left(x+1\right)\left(-x+2\right)} times \frac{-1}{-1}.
\frac{\frac{-\left(x^{2}+2x+4\right)+x^{2}+4x+6}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+1}{2x^{2}-4x}}
Since \frac{-\left(x^{2}+2x+4\right)}{\left(x-2\right)\left(x+1\right)} and \frac{x^{2}+4x+6}{\left(x-2\right)\left(x+1\right)} have the same denominator, add them by adding their numerators.
\frac{\frac{-x^{2}-2x-4+x^{2}+4x+6}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+1}{2x^{2}-4x}}
Do the multiplications in -\left(x^{2}+2x+4\right)+x^{2}+4x+6.
\frac{\frac{2x+2}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+1}{2x^{2}-4x}}
Combine like terms in -x^{2}-2x-4+x^{2}+4x+6.
\frac{\frac{2\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}}{\frac{x^{2}+1}{2x^{2}-4x}}
Factor the expressions that are not already factored in \frac{2x+2}{\left(x-2\right)\left(x+1\right)}.
\frac{\frac{2}{x-2}}{\frac{x^{2}+1}{2x^{2}-4x}}
Cancel out x+1 in both numerator and denominator.
\frac{2\left(2x^{2}-4x\right)}{\left(x-2\right)\left(x^{2}+1\right)}
Divide \frac{2}{x-2} by \frac{x^{2}+1}{2x^{2}-4x} by multiplying \frac{2}{x-2} by the reciprocal of \frac{x^{2}+1}{2x^{2}-4x}.
\frac{2^{2}x\left(x-2\right)}{\left(x-2\right)\left(x^{2}+1\right)}
Factor the expressions that are not already factored.
\frac{2^{2}x}{x^{2}+1}
Cancel out x-2 in both numerator and denominator.
\frac{4x}{x^{2}+1}
Expand the expression.