Solve for x
x=\frac{5}{18}\approx 0.277777778
Graph
Share
Copied to clipboard
2\left(x+1\right)-\left(2x-3\right)=48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
Multiply both sides of the equation by 16, the least common multiple of 8,16,4.
2x+2-\left(2x-3\right)=48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
Use the distributive property to multiply 2 by x+1.
2x+2-2x-\left(-3\right)=48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
To find the opposite of 2x-3, find the opposite of each term.
2x+2-2x+3=48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
The opposite of -3 is 3.
2+3=48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
Combine 2x and -2x to get 0.
5=48\left(\frac{3}{4}x-\frac{1}{4}\right)-6\left(3x-2\right)
Add 2 and 3 to get 5.
5=48\times \frac{3}{4}x+48\left(-\frac{1}{4}\right)-6\left(3x-2\right)
Use the distributive property to multiply 48 by \frac{3}{4}x-\frac{1}{4}.
5=\frac{48\times 3}{4}x+48\left(-\frac{1}{4}\right)-6\left(3x-2\right)
Express 48\times \frac{3}{4} as a single fraction.
5=\frac{144}{4}x+48\left(-\frac{1}{4}\right)-6\left(3x-2\right)
Multiply 48 and 3 to get 144.
5=36x+48\left(-\frac{1}{4}\right)-6\left(3x-2\right)
Divide 144 by 4 to get 36.
5=36x+\frac{48\left(-1\right)}{4}-6\left(3x-2\right)
Express 48\left(-\frac{1}{4}\right) as a single fraction.
5=36x+\frac{-48}{4}-6\left(3x-2\right)
Multiply 48 and -1 to get -48.
5=36x-12-6\left(3x-2\right)
Divide -48 by 4 to get -12.
5=36x-12-18x+12
Use the distributive property to multiply -6 by 3x-2.
5=18x-12+12
Combine 36x and -18x to get 18x.
5=18x
Add -12 and 12 to get 0.
18x=5
Swap sides so that all variable terms are on the left hand side.
x=\frac{5}{18}
Divide both sides by 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}