Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(\frac{3\times 5x}{6}-\frac{2}{6}\right)\left(2x+4\right)-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5x}{2} times \frac{3}{3}. Multiply \frac{1}{3} times \frac{2}{2}.
\frac{3\times 5x-2}{6}\left(2x+4\right)-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Since \frac{3\times 5x}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{15x-2}{6}\left(2x+4\right)-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Do the multiplications in 3\times 5x-2.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Express \frac{15x-2}{6}\left(2x+4\right) as a single fraction.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\left(\frac{3\times 5x}{6}-\frac{2}{6}\right)\left(6-5x\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5x}{2} times \frac{3}{3}. Multiply \frac{1}{3} times \frac{2}{2}.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\frac{3\times 5x-2}{6}\left(6-5x\right)
Since \frac{3\times 5x}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\frac{15x-2}{6}\left(6-5x\right)
Do the multiplications in 3\times 5x-2.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\frac{\left(15x-2\right)\left(6-5x\right)}{6}
Express \frac{15x-2}{6}\left(6-5x\right) as a single fraction.
\frac{\left(15x-2\right)\left(2x+4\right)-\left(15x-2\right)\left(6-5x\right)}{6}
Since \frac{\left(15x-2\right)\left(2x+4\right)}{6} and \frac{\left(15x-2\right)\left(6-5x\right)}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{30x^{2}+60x-4x-8-90x+75x^{2}+12-10x}{6}
Do the multiplications in \left(15x-2\right)\left(2x+4\right)-\left(15x-2\right)\left(6-5x\right).
\frac{105x^{2}-44x+4}{6}
Combine like terms in 30x^{2}+60x-4x-8-90x+75x^{2}+12-10x.
\left(\frac{3\times 5x}{6}-\frac{2}{6}\right)\left(2x+4\right)-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5x}{2} times \frac{3}{3}. Multiply \frac{1}{3} times \frac{2}{2}.
\frac{3\times 5x-2}{6}\left(2x+4\right)-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Since \frac{3\times 5x}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{15x-2}{6}\left(2x+4\right)-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Do the multiplications in 3\times 5x-2.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\left(\frac{5x}{2}-\frac{1}{3}\right)\left(6-5x\right)
Express \frac{15x-2}{6}\left(2x+4\right) as a single fraction.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\left(\frac{3\times 5x}{6}-\frac{2}{6}\right)\left(6-5x\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2 and 3 is 6. Multiply \frac{5x}{2} times \frac{3}{3}. Multiply \frac{1}{3} times \frac{2}{2}.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\frac{3\times 5x-2}{6}\left(6-5x\right)
Since \frac{3\times 5x}{6} and \frac{2}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\frac{15x-2}{6}\left(6-5x\right)
Do the multiplications in 3\times 5x-2.
\frac{\left(15x-2\right)\left(2x+4\right)}{6}-\frac{\left(15x-2\right)\left(6-5x\right)}{6}
Express \frac{15x-2}{6}\left(6-5x\right) as a single fraction.
\frac{\left(15x-2\right)\left(2x+4\right)-\left(15x-2\right)\left(6-5x\right)}{6}
Since \frac{\left(15x-2\right)\left(2x+4\right)}{6} and \frac{\left(15x-2\right)\left(6-5x\right)}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{30x^{2}+60x-4x-8-90x+75x^{2}+12-10x}{6}
Do the multiplications in \left(15x-2\right)\left(2x+4\right)-\left(15x-2\right)\left(6-5x\right).
\frac{105x^{2}-44x+4}{6}
Combine like terms in 30x^{2}+60x-4x-8-90x+75x^{2}+12-10x.