Solve for A
A=\frac{27}{400\pi }\approx 0.021485917
Share
Copied to clipboard
\frac{3\left(-3\right)}{5\times 4}=\frac{A\pi }{-\frac{3}{5}}\times 4
Multiply \frac{3}{5} times -\frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-9}{20}=\frac{A\pi }{-\frac{3}{5}}\times 4
Do the multiplications in the fraction \frac{3\left(-3\right)}{5\times 4}.
-\frac{9}{20}=\frac{A\pi }{-\frac{3}{5}}\times 4
Fraction \frac{-9}{20} can be rewritten as -\frac{9}{20} by extracting the negative sign.
\frac{A\pi }{-\frac{3}{5}}\times 4=-\frac{9}{20}
Swap sides so that all variable terms are on the left hand side.
\frac{A\pi }{-\frac{3}{5}}=\frac{-\frac{9}{20}}{4}
Divide both sides by 4.
\frac{A\pi }{-\frac{3}{5}}=\frac{-9}{20\times 4}
Express \frac{-\frac{9}{20}}{4} as a single fraction.
\frac{A\pi }{-\frac{3}{5}}=\frac{-9}{80}
Multiply 20 and 4 to get 80.
\frac{A\pi }{-\frac{3}{5}}=-\frac{9}{80}
Fraction \frac{-9}{80} can be rewritten as -\frac{9}{80} by extracting the negative sign.
A\pi =-\frac{9}{80}\left(-\frac{3}{5}\right)
Multiply both sides by -\frac{3}{5}.
A\pi =\frac{-9\left(-3\right)}{80\times 5}
Multiply -\frac{9}{80} times -\frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
A\pi =\frac{27}{400}
Do the multiplications in the fraction \frac{-9\left(-3\right)}{80\times 5}.
\pi A=\frac{27}{400}
The equation is in standard form.
\frac{\pi A}{\pi }=\frac{\frac{27}{400}}{\pi }
Divide both sides by \pi .
A=\frac{\frac{27}{400}}{\pi }
Dividing by \pi undoes the multiplication by \pi .
A=\frac{27}{400\pi }
Divide \frac{27}{400} by \pi .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}