Evaluate
\frac{31}{2}-5\sqrt{6}\approx 3.252551286
Share
Copied to clipboard
\left(\frac{3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}-2\times \frac{3}{\sqrt{3}}\times \frac{5}{\sqrt{2}}+\left(\frac{5}{\sqrt{2}}\right)^{2}
Rationalize the denominator of \frac{3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\frac{3\sqrt{3}}{3}\right)^{2}-2\times \frac{3}{\sqrt{3}}\times \frac{5}{\sqrt{2}}+\left(\frac{5}{\sqrt{2}}\right)^{2}
The square of \sqrt{3} is 3.
\left(\sqrt{3}\right)^{2}-2\times \frac{3}{\sqrt{3}}\times \frac{5}{\sqrt{2}}+\left(\frac{5}{\sqrt{2}}\right)^{2}
Cancel out 3 and 3.
3-2\times \frac{3}{\sqrt{3}}\times \frac{5}{\sqrt{2}}+\left(\frac{5}{\sqrt{2}}\right)^{2}
The square of \sqrt{3} is 3.
3-2\times \frac{3\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\times \frac{5}{\sqrt{2}}+\left(\frac{5}{\sqrt{2}}\right)^{2}
Rationalize the denominator of \frac{3}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
3-2\times \frac{3\sqrt{3}}{3}\times \frac{5}{\sqrt{2}}+\left(\frac{5}{\sqrt{2}}\right)^{2}
The square of \sqrt{3} is 3.
3-2\sqrt{3}\times \frac{5}{\sqrt{2}}+\left(\frac{5}{\sqrt{2}}\right)^{2}
Cancel out 3 and 3.
3-2\sqrt{3}\times \frac{5\sqrt{2}}{\left(\sqrt{2}\right)^{2}}+\left(\frac{5}{\sqrt{2}}\right)^{2}
Rationalize the denominator of \frac{5}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
3-2\sqrt{3}\times \frac{5\sqrt{2}}{2}+\left(\frac{5}{\sqrt{2}}\right)^{2}
The square of \sqrt{2} is 2.
3-5\sqrt{2}\sqrt{3}+\left(\frac{5}{\sqrt{2}}\right)^{2}
Cancel out 2 and 2.
3-5\sqrt{2}\sqrt{3}+\left(\frac{5\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{5}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
3-5\sqrt{2}\sqrt{3}+\left(\frac{5\sqrt{2}}{2}\right)^{2}
The square of \sqrt{2} is 2.
3-5\sqrt{2}\sqrt{3}+\frac{\left(5\sqrt{2}\right)^{2}}{2^{2}}
To raise \frac{5\sqrt{2}}{2} to a power, raise both numerator and denominator to the power and then divide.
3-5\sqrt{6}+\frac{\left(5\sqrt{2}\right)^{2}}{2^{2}}
To multiply \sqrt{2} and \sqrt{3}, multiply the numbers under the square root.
3-5\sqrt{6}+\frac{5^{2}\left(\sqrt{2}\right)^{2}}{2^{2}}
Expand \left(5\sqrt{2}\right)^{2}.
3-5\sqrt{6}+\frac{25\left(\sqrt{2}\right)^{2}}{2^{2}}
Calculate 5 to the power of 2 and get 25.
3-5\sqrt{6}+\frac{25\times 2}{2^{2}}
The square of \sqrt{2} is 2.
3-5\sqrt{6}+\frac{50}{2^{2}}
Multiply 25 and 2 to get 50.
3-5\sqrt{6}+\frac{50}{4}
Calculate 2 to the power of 2 and get 4.
3-5\sqrt{6}+\frac{25}{2}
Reduce the fraction \frac{50}{4} to lowest terms by extracting and canceling out 2.
\frac{31}{2}-5\sqrt{6}
Add 3 and \frac{25}{2} to get \frac{31}{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}