Evaluate
1
Factor
1
Share
Copied to clipboard
\left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}-\left(\frac{1}{\sqrt{3}}\right)^{2}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\left(\frac{2\sqrt{3}}{3}\right)^{2}-\left(\frac{1}{\sqrt{3}}\right)^{2}
The square of \sqrt{3} is 3.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}-\left(\frac{1}{\sqrt{3}}\right)^{2}
To raise \frac{2\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}-\left(\frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}-\left(\frac{\sqrt{3}}{3}\right)^{2}
The square of \sqrt{3} is 3.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}-\frac{\left(\sqrt{3}\right)^{2}}{3^{2}}
To raise \frac{\sqrt{3}}{3} to a power, raise both numerator and denominator to the power and then divide.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}-\frac{3}{3^{2}}
The square of \sqrt{3} is 3.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}-\frac{3}{9}
Calculate 3 to the power of 2 and get 9.
\frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}-\frac{1}{3}
Reduce the fraction \frac{3}{9} to lowest terms by extracting and canceling out 3.
\frac{\left(2\sqrt{3}\right)^{2}}{9}-\frac{3}{9}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3^{2} and 3 is 9. Multiply \frac{1}{3} times \frac{3}{3}.
\frac{\left(2\sqrt{3}\right)^{2}-3}{9}
Since \frac{\left(2\sqrt{3}\right)^{2}}{9} and \frac{3}{9} have the same denominator, subtract them by subtracting their numerators.
\frac{2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}-\frac{1}{3}
Expand \left(2\sqrt{3}\right)^{2}.
\frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}-\frac{1}{3}
Calculate 2 to the power of 2 and get 4.
\frac{4\times 3}{3^{2}}-\frac{1}{3}
The square of \sqrt{3} is 3.
\frac{12}{3^{2}}-\frac{1}{3}
Multiply 4 and 3 to get 12.
\frac{12}{9}-\frac{1}{3}
Calculate 3 to the power of 2 and get 9.
\frac{4}{3}-\frac{1}{3}
Reduce the fraction \frac{12}{9} to lowest terms by extracting and canceling out 3.
1
Subtract \frac{1}{3} from \frac{4}{3} to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}