Evaluate
\frac{\sqrt{3315}}{60}\approx 0.959600611
Share
Copied to clipboard
\sqrt{\frac{2}{5}+\frac{625}{1200}}
Reduce the fraction \frac{400}{1000} to lowest terms by extracting and canceling out 200.
\sqrt{\frac{2}{5}+\frac{25}{48}}
Reduce the fraction \frac{625}{1200} to lowest terms by extracting and canceling out 25.
\sqrt{\frac{96}{240}+\frac{125}{240}}
Least common multiple of 5 and 48 is 240. Convert \frac{2}{5} and \frac{25}{48} to fractions with denominator 240.
\sqrt{\frac{96+125}{240}}
Since \frac{96}{240} and \frac{125}{240} have the same denominator, add them by adding their numerators.
\sqrt{\frac{221}{240}}
Add 96 and 125 to get 221.
\frac{\sqrt{221}}{\sqrt{240}}
Rewrite the square root of the division \sqrt{\frac{221}{240}} as the division of square roots \frac{\sqrt{221}}{\sqrt{240}}.
\frac{\sqrt{221}}{4\sqrt{15}}
Factor 240=4^{2}\times 15. Rewrite the square root of the product \sqrt{4^{2}\times 15} as the product of square roots \sqrt{4^{2}}\sqrt{15}. Take the square root of 4^{2}.
\frac{\sqrt{221}\sqrt{15}}{4\left(\sqrt{15}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{221}}{4\sqrt{15}} by multiplying numerator and denominator by \sqrt{15}.
\frac{\sqrt{221}\sqrt{15}}{4\times 15}
The square of \sqrt{15} is 15.
\frac{\sqrt{3315}}{4\times 15}
To multiply \sqrt{221} and \sqrt{15}, multiply the numbers under the square root.
\frac{\sqrt{3315}}{60}
Multiply 4 and 15 to get 60.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}