Evaluate
\frac{\sqrt{40711670}}{141300}\approx 0.045156191
Share
Copied to clipboard
\sqrt{\frac{16595.84}{3\times 3.14\times 6\times 40\times 3600}}
Cancel out 2 in both numerator and denominator.
\sqrt{\frac{16595.84}{9.42\times 6\times 40\times 3600}}
Multiply 3 and 3.14 to get 9.42.
\sqrt{\frac{16595.84}{56.52\times 40\times 3600}}
Multiply 9.42 and 6 to get 56.52.
\sqrt{\frac{16595.84}{2260.8\times 3600}}
Multiply 56.52 and 40 to get 2260.8.
\sqrt{\frac{16595.84}{8138880}}
Multiply 2260.8 and 3600 to get 8138880.
\sqrt{\frac{1659584}{813888000}}
Expand \frac{16595.84}{8138880} by multiplying both numerator and the denominator by 100.
\sqrt{\frac{25931}{12717000}}
Reduce the fraction \frac{1659584}{813888000} to lowest terms by extracting and canceling out 64.
\frac{\sqrt{25931}}{\sqrt{12717000}}
Rewrite the square root of the division \sqrt{\frac{25931}{12717000}} as the division of square roots \frac{\sqrt{25931}}{\sqrt{12717000}}.
\frac{\sqrt{25931}}{90\sqrt{1570}}
Factor 12717000=90^{2}\times 1570. Rewrite the square root of the product \sqrt{90^{2}\times 1570} as the product of square roots \sqrt{90^{2}}\sqrt{1570}. Take the square root of 90^{2}.
\frac{\sqrt{25931}\sqrt{1570}}{90\left(\sqrt{1570}\right)^{2}}
Rationalize the denominator of \frac{\sqrt{25931}}{90\sqrt{1570}} by multiplying numerator and denominator by \sqrt{1570}.
\frac{\sqrt{25931}\sqrt{1570}}{90\times 1570}
The square of \sqrt{1570} is 1570.
\frac{\sqrt{40711670}}{90\times 1570}
To multiply \sqrt{25931} and \sqrt{1570}, multiply the numbers under the square root.
\frac{\sqrt{40711670}}{141300}
Multiply 90 and 1570 to get 141300.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}