Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\int 5+8t-2t^{2}\mathrm{d}t
Evaluate the indefinite integral first.
\int 5\mathrm{d}t+\int 8t\mathrm{d}t+\int -2t^{2}\mathrm{d}t
Integrate the sum term by term.
\int 5\mathrm{d}t+8\int t\mathrm{d}t-2\int t^{2}\mathrm{d}t
Factor out the constant in each of the terms.
5t+8\int t\mathrm{d}t-2\int t^{2}\mathrm{d}t
Find the integral of 5 using the table of common integrals rule \int a\mathrm{d}t=at.
5t+4t^{2}-2\int t^{2}\mathrm{d}t
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t\mathrm{d}t with \frac{t^{2}}{2}. Multiply 8 times \frac{t^{2}}{2}.
5t+4t^{2}-\frac{2t^{3}}{3}
Since \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} for k\neq -1, replace \int t^{2}\mathrm{d}t with \frac{t^{3}}{3}. Multiply -2 times \frac{t^{3}}{3}.
5\times 4+4\times 4^{2}-\frac{2}{3}\times 4^{3}-\left(5\times 0+4\times 0^{2}-\frac{2}{3}\times 0^{3}\right)
The definite integral is the antiderivative of the expression evaluated at the upper limit of integration minus the antiderivative evaluated at the lower limit of integration.
\frac{124}{3}
Simplify.