Solve for x
x=-\frac{1}{2}=-0.5
Graph
Share
Copied to clipboard
xx+\left(x+1\right)\left(x-1\right)=2x\left(x+1\right)
Variable x cannot be equal to any of the values -1,0 since division by zero is not defined. Multiply both sides of the equation by x\left(x+1\right), the least common multiple of x+1,x.
x^{2}+\left(x+1\right)\left(x-1\right)=2x\left(x+1\right)
Multiply x and x to get x^{2}.
x^{2}+x^{2}-1=2x\left(x+1\right)
Consider \left(x+1\right)\left(x-1\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 1.
2x^{2}-1=2x\left(x+1\right)
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}-1=2x^{2}+2x
Use the distributive property to multiply 2x by x+1.
2x^{2}-1-2x^{2}=2x
Subtract 2x^{2} from both sides.
-1=2x
Combine 2x^{2} and -2x^{2} to get 0.
2x=-1
Swap sides so that all variable terms are on the left hand side.
x=\frac{-1}{2}
Divide both sides by 2.
x=-\frac{1}{2}
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}