Factor
\frac{\sqrt{10}f\left(x^{2}+36\right)}{20}
Evaluate
\frac{\sqrt{10}f\left(x^{2}+36\right)}{20}
Graph
Share
Copied to clipboard
factor(\frac{f\left(x^{2}+36\right)}{\sqrt{4+36}})
Calculate 6 to the power of 2 and get 36.
factor(\frac{f\left(x^{2}+36\right)}{\sqrt{40}})
Add 4 and 36 to get 40.
factor(\frac{f\left(x^{2}+36\right)}{2\sqrt{10}})
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
factor(\frac{f\left(x^{2}+36\right)\sqrt{10}}{2\left(\sqrt{10}\right)^{2}})
Rationalize the denominator of \frac{f\left(x^{2}+36\right)}{2\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
factor(\frac{f\left(x^{2}+36\right)\sqrt{10}}{2\times 10})
The square of \sqrt{10} is 10.
factor(\frac{f\left(x^{2}+36\right)\sqrt{10}}{20})
Multiply 2 and 10 to get 20.
factor(\frac{\left(fx^{2}+36f\right)\sqrt{10}}{20})
Use the distributive property to multiply f by x^{2}+36.
factor(\frac{fx^{2}\sqrt{10}+36f\sqrt{10}}{20})
Use the distributive property to multiply fx^{2}+36f by \sqrt{10}.
f\sqrt{10}\left(x^{2}+36\right)
Consider fx^{2}\sqrt{10}+36f\sqrt{10}. Factor out f\sqrt{10}.
\frac{f\left(x^{2}+36\right)\sqrt{10}}{20}
Rewrite the complete factored expression. Polynomial x^{2}+36 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}