Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

factor(\frac{f\left(x^{2}+36\right)}{\sqrt{4+36}})
Calculate 6 to the power of 2 and get 36.
factor(\frac{f\left(x^{2}+36\right)}{\sqrt{40}})
Add 4 and 36 to get 40.
factor(\frac{f\left(x^{2}+36\right)}{2\sqrt{10}})
Factor 40=2^{2}\times 10. Rewrite the square root of the product \sqrt{2^{2}\times 10} as the product of square roots \sqrt{2^{2}}\sqrt{10}. Take the square root of 2^{2}.
factor(\frac{f\left(x^{2}+36\right)\sqrt{10}}{2\left(\sqrt{10}\right)^{2}})
Rationalize the denominator of \frac{f\left(x^{2}+36\right)}{2\sqrt{10}} by multiplying numerator and denominator by \sqrt{10}.
factor(\frac{f\left(x^{2}+36\right)\sqrt{10}}{2\times 10})
The square of \sqrt{10} is 10.
factor(\frac{f\left(x^{2}+36\right)\sqrt{10}}{20})
Multiply 2 and 10 to get 20.
factor(\frac{\left(fx^{2}+36f\right)\sqrt{10}}{20})
Use the distributive property to multiply f by x^{2}+36.
factor(\frac{fx^{2}\sqrt{10}+36f\sqrt{10}}{20})
Use the distributive property to multiply fx^{2}+36f by \sqrt{10}.
f\sqrt{10}\left(x^{2}+36\right)
Consider fx^{2}\sqrt{10}+36f\sqrt{10}. Factor out f\sqrt{10}.
\frac{f\left(x^{2}+36\right)\sqrt{10}}{20}
Rewrite the complete factored expression. Polynomial x^{2}+36 is not factored since it does not have any rational roots.