Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{7\sqrt{3}-5\sqrt{2}}{4\sqrt{3}+\sqrt{18}}
Factor 48=4^{2}\times 3. Rewrite the square root of the product \sqrt{4^{2}\times 3} as the product of square roots \sqrt{4^{2}}\sqrt{3}. Take the square root of 4^{2}.
\frac{7\sqrt{3}-5\sqrt{2}}{4\sqrt{3}+3\sqrt{2}}
Factor 18=3^{2}\times 2. Rewrite the square root of the product \sqrt{3^{2}\times 2} as the product of square roots \sqrt{3^{2}}\sqrt{2}. Take the square root of 3^{2}.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{\left(4\sqrt{3}+3\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}
Rationalize the denominator of \frac{7\sqrt{3}-5\sqrt{2}}{4\sqrt{3}+3\sqrt{2}} by multiplying numerator and denominator by 4\sqrt{3}-3\sqrt{2}.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{\left(4\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
Consider \left(4\sqrt{3}+3\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{4^{2}\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
Expand \left(4\sqrt{3}\right)^{2}.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{16\left(\sqrt{3}\right)^{2}-\left(3\sqrt{2}\right)^{2}}
Calculate 4 to the power of 2 and get 16.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{16\times 3-\left(3\sqrt{2}\right)^{2}}
The square of \sqrt{3} is 3.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-\left(3\sqrt{2}\right)^{2}}
Multiply 16 and 3 to get 48.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-3^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(3\sqrt{2}\right)^{2}.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-9\left(\sqrt{2}\right)^{2}}
Calculate 3 to the power of 2 and get 9.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-9\times 2}
The square of \sqrt{2} is 2.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{48-18}
Multiply 9 and 2 to get 18.
\frac{\left(7\sqrt{3}-5\sqrt{2}\right)\left(4\sqrt{3}-3\sqrt{2}\right)}{30}
Subtract 18 from 48 to get 30.
\frac{28\left(\sqrt{3}\right)^{2}-21\sqrt{3}\sqrt{2}-20\sqrt{3}\sqrt{2}+15\left(\sqrt{2}\right)^{2}}{30}
Apply the distributive property by multiplying each term of 7\sqrt{3}-5\sqrt{2} by each term of 4\sqrt{3}-3\sqrt{2}.
\frac{28\times 3-21\sqrt{3}\sqrt{2}-20\sqrt{3}\sqrt{2}+15\left(\sqrt{2}\right)^{2}}{30}
The square of \sqrt{3} is 3.
\frac{84-21\sqrt{3}\sqrt{2}-20\sqrt{3}\sqrt{2}+15\left(\sqrt{2}\right)^{2}}{30}
Multiply 28 and 3 to get 84.
\frac{84-21\sqrt{6}-20\sqrt{3}\sqrt{2}+15\left(\sqrt{2}\right)^{2}}{30}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{84-21\sqrt{6}-20\sqrt{6}+15\left(\sqrt{2}\right)^{2}}{30}
To multiply \sqrt{3} and \sqrt{2}, multiply the numbers under the square root.
\frac{84-41\sqrt{6}+15\left(\sqrt{2}\right)^{2}}{30}
Combine -21\sqrt{6} and -20\sqrt{6} to get -41\sqrt{6}.
\frac{84-41\sqrt{6}+15\times 2}{30}
The square of \sqrt{2} is 2.
\frac{84-41\sqrt{6}+30}{30}
Multiply 15 and 2 to get 30.
\frac{114-41\sqrt{6}}{30}
Add 84 and 30 to get 114.